This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The matrix ring has the same scalars as its underlying linear structure. (Contributed by Stefan O'Rear, 4-Sep-2015) (Proof shortened by AV, 12-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | matbas.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| matbas.g | ⊢ 𝐺 = ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) | ||
| Assertion | matsca | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( Scalar ‘ 𝐺 ) = ( Scalar ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | matbas.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| 2 | matbas.g | ⊢ 𝐺 = ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) | |
| 3 | scaid | ⊢ Scalar = Slot ( Scalar ‘ ndx ) | |
| 4 | scandxnmulrndx | ⊢ ( Scalar ‘ ndx ) ≠ ( .r ‘ ndx ) | |
| 5 | 3 4 | setsnid | ⊢ ( Scalar ‘ 𝐺 ) = ( Scalar ‘ ( 𝐺 sSet 〈 ( .r ‘ ndx ) , ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) 〉 ) ) |
| 6 | eqid | ⊢ ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) = ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) | |
| 7 | 1 2 6 | matval | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → 𝐴 = ( 𝐺 sSet 〈 ( .r ‘ ndx ) , ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) 〉 ) ) |
| 8 | 7 | fveq2d | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( Scalar ‘ 𝐴 ) = ( Scalar ‘ ( 𝐺 sSet 〈 ( .r ‘ ndx ) , ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) 〉 ) ) ) |
| 9 | 5 8 | eqtr4id | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( Scalar ‘ 𝐺 ) = ( Scalar ‘ 𝐴 ) ) |