This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition in the matrix ring is cell-wise. (Contributed by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | matplusg2.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| matplusg2.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | ||
| matplusg2.p | ⊢ ✚ = ( +g ‘ 𝐴 ) | ||
| matplusg2.q | ⊢ + = ( +g ‘ 𝑅 ) | ||
| Assertion | matplusg2 | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ✚ 𝑌 ) = ( 𝑋 ∘f + 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | matplusg2.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| 2 | matplusg2.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | |
| 3 | matplusg2.p | ⊢ ✚ = ( +g ‘ 𝐴 ) | |
| 4 | matplusg2.q | ⊢ + = ( +g ‘ 𝑅 ) | |
| 5 | 1 2 | matrcl | ⊢ ( 𝑋 ∈ 𝐵 → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) ) |
| 6 | 5 | adantr | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) ) |
| 7 | eqid | ⊢ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) = ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) | |
| 8 | 1 7 | matplusg | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) → ( +g ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = ( +g ‘ 𝐴 ) ) |
| 9 | 8 3 | eqtr4di | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) → ( +g ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = ✚ ) |
| 10 | 6 9 | syl | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( +g ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = ✚ ) |
| 11 | 10 | oveqd | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ( +g ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) 𝑌 ) = ( 𝑋 ✚ 𝑌 ) ) |
| 12 | eqid | ⊢ ( Base ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = ( Base ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) | |
| 13 | 6 | simprd | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑅 ∈ V ) |
| 14 | 6 | simpld | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑁 ∈ Fin ) |
| 15 | xpfi | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ) → ( 𝑁 × 𝑁 ) ∈ Fin ) | |
| 16 | 14 14 15 | syl2anc | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑁 × 𝑁 ) ∈ Fin ) |
| 17 | simpl | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 18 | 1 7 | matbas | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) → ( Base ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = ( Base ‘ 𝐴 ) ) |
| 19 | 6 18 | syl | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( Base ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = ( Base ‘ 𝐴 ) ) |
| 20 | 19 2 | eqtr4di | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( Base ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = 𝐵 ) |
| 21 | 17 20 | eleqtrrd | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ ( Base ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) ) |
| 22 | simpr | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) | |
| 23 | 22 20 | eleqtrrd | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ ( Base ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) ) |
| 24 | eqid | ⊢ ( +g ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) = ( +g ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) | |
| 25 | 7 12 13 16 21 23 4 24 | frlmplusgval | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ( +g ‘ ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) 𝑌 ) = ( 𝑋 ∘f + 𝑌 ) ) |
| 26 | 11 25 | eqtr3d | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ✚ 𝑌 ) = ( 𝑋 ∘f + 𝑌 ) ) |