This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is a ring homomorphism from a ring to the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mat1rhmval.k | |- K = ( Base ` R ) |
|
| mat1rhmval.a | |- A = ( { E } Mat R ) |
||
| mat1rhmval.b | |- B = ( Base ` A ) |
||
| mat1rhmval.o | |- O = <. E , E >. |
||
| mat1rhmval.f | |- F = ( x e. K |-> { <. O , x >. } ) |
||
| Assertion | mat1rhm | |- ( ( R e. Ring /\ E e. V ) -> F e. ( R RingHom A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mat1rhmval.k | |- K = ( Base ` R ) |
|
| 2 | mat1rhmval.a | |- A = ( { E } Mat R ) |
|
| 3 | mat1rhmval.b | |- B = ( Base ` A ) |
|
| 4 | mat1rhmval.o | |- O = <. E , E >. |
|
| 5 | mat1rhmval.f | |- F = ( x e. K |-> { <. O , x >. } ) |
|
| 6 | simpl | |- ( ( R e. Ring /\ E e. V ) -> R e. Ring ) |
|
| 7 | snfi | |- { E } e. Fin |
|
| 8 | 2 | matring | |- ( ( { E } e. Fin /\ R e. Ring ) -> A e. Ring ) |
| 9 | 7 6 8 | sylancr | |- ( ( R e. Ring /\ E e. V ) -> A e. Ring ) |
| 10 | 1 2 3 4 5 | mat1ghm | |- ( ( R e. Ring /\ E e. V ) -> F e. ( R GrpHom A ) ) |
| 11 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 12 | eqid | |- ( mulGrp ` A ) = ( mulGrp ` A ) |
|
| 13 | 1 2 3 4 5 11 12 | mat1mhm | |- ( ( R e. Ring /\ E e. V ) -> F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` A ) ) ) |
| 14 | 10 13 | jca | |- ( ( R e. Ring /\ E e. V ) -> ( F e. ( R GrpHom A ) /\ F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` A ) ) ) ) |
| 15 | 11 12 | isrhm | |- ( F e. ( R RingHom A ) <-> ( ( R e. Ring /\ A e. Ring ) /\ ( F e. ( R GrpHom A ) /\ F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` A ) ) ) ) ) |
| 16 | 6 9 14 15 | syl21anbrc | |- ( ( R e. Ring /\ E e. V ) -> F e. ( R RingHom A ) ) |