This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A bijection between a set and single-point functions to it. (Contributed by Stefan O'Rear, 24-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ixpsnf1o.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( { 𝐼 } × { 𝑥 } ) ) | |
| Assertion | mapsnf1o | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝐹 : 𝐴 –1-1-onto→ ( 𝐴 ↑m { 𝐼 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixpsnf1o.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( { 𝐼 } × { 𝑥 } ) ) | |
| 2 | 1 | ixpsnf1o | ⊢ ( 𝐼 ∈ 𝑊 → 𝐹 : 𝐴 –1-1-onto→ X 𝑦 ∈ { 𝐼 } 𝐴 ) |
| 3 | 2 | adantl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝐹 : 𝐴 –1-1-onto→ X 𝑦 ∈ { 𝐼 } 𝐴 ) |
| 4 | snex | ⊢ { 𝐼 } ∈ V | |
| 5 | ixpconstg | ⊢ ( ( { 𝐼 } ∈ V ∧ 𝐴 ∈ 𝑉 ) → X 𝑦 ∈ { 𝐼 } 𝐴 = ( 𝐴 ↑m { 𝐼 } ) ) | |
| 6 | 5 | eqcomd | ⊢ ( ( { 𝐼 } ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 ↑m { 𝐼 } ) = X 𝑦 ∈ { 𝐼 } 𝐴 ) |
| 7 | 4 6 | mpan | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ↑m { 𝐼 } ) = X 𝑦 ∈ { 𝐼 } 𝐴 ) |
| 8 | 7 | adantr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( 𝐴 ↑m { 𝐼 } ) = X 𝑦 ∈ { 𝐼 } 𝐴 ) |
| 9 | 8 | f1oeq3d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( 𝐹 : 𝐴 –1-1-onto→ ( 𝐴 ↑m { 𝐼 } ) ↔ 𝐹 : 𝐴 –1-1-onto→ X 𝑦 ∈ { 𝐼 } 𝐴 ) ) |
| 10 | 3 9 | mpbird | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝐹 : 𝐴 –1-1-onto→ ( 𝐴 ↑m { 𝐼 } ) ) |