This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express a singleton function in maps-to notation. (Contributed by NM, 6-Jun-2006) (Proof shortened by Andrew Salmon, 22-Oct-2011) (Revised by Stefan O'Rear, 28-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fmptsn | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → { 〈 𝐴 , 𝐵 〉 } = ( 𝑥 ∈ { 𝐴 } ↦ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsng | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( { 𝐴 } × { 𝐵 } ) = { 〈 𝐴 , 𝐵 〉 } ) | |
| 2 | fconstmpt | ⊢ ( { 𝐴 } × { 𝐵 } ) = ( 𝑥 ∈ { 𝐴 } ↦ 𝐵 ) | |
| 3 | 1 2 | eqtr3di | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → { 〈 𝐴 , 𝐵 〉 } = ( 𝑥 ∈ { 𝐴 } ↦ 𝐵 ) ) |