This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero of the algebra of matrices with dimension 0. (Contributed by AV, 6-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mat0dim.a | ⊢ 𝐴 = ( ∅ Mat 𝑅 ) | |
| Assertion | mat0dim0 | ⊢ ( 𝑅 ∈ Ring → ( 0g ‘ 𝐴 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mat0dim.a | ⊢ 𝐴 = ( ∅ Mat 𝑅 ) | |
| 2 | 0fi | ⊢ ∅ ∈ Fin | |
| 3 | 1 | matring | ⊢ ( ( ∅ ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
| 4 | 2 3 | mpan | ⊢ ( 𝑅 ∈ Ring → 𝐴 ∈ Ring ) |
| 5 | ringgrp | ⊢ ( 𝐴 ∈ Ring → 𝐴 ∈ Grp ) | |
| 6 | eqid | ⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) | |
| 7 | eqid | ⊢ ( 0g ‘ 𝐴 ) = ( 0g ‘ 𝐴 ) | |
| 8 | 6 7 | grpidcl | ⊢ ( 𝐴 ∈ Grp → ( 0g ‘ 𝐴 ) ∈ ( Base ‘ 𝐴 ) ) |
| 9 | 4 5 8 | 3syl | ⊢ ( 𝑅 ∈ Ring → ( 0g ‘ 𝐴 ) ∈ ( Base ‘ 𝐴 ) ) |
| 10 | 1 | fveq2i | ⊢ ( Base ‘ 𝐴 ) = ( Base ‘ ( ∅ Mat 𝑅 ) ) |
| 11 | mat0dimbas0 | ⊢ ( 𝑅 ∈ Ring → ( Base ‘ ( ∅ Mat 𝑅 ) ) = { ∅ } ) | |
| 12 | 10 11 | eqtrid | ⊢ ( 𝑅 ∈ Ring → ( Base ‘ 𝐴 ) = { ∅ } ) |
| 13 | 12 | eleq2d | ⊢ ( 𝑅 ∈ Ring → ( ( 0g ‘ 𝐴 ) ∈ ( Base ‘ 𝐴 ) ↔ ( 0g ‘ 𝐴 ) ∈ { ∅ } ) ) |
| 14 | elsni | ⊢ ( ( 0g ‘ 𝐴 ) ∈ { ∅ } → ( 0g ‘ 𝐴 ) = ∅ ) | |
| 15 | 13 14 | biimtrdi | ⊢ ( 𝑅 ∈ Ring → ( ( 0g ‘ 𝐴 ) ∈ ( Base ‘ 𝐴 ) → ( 0g ‘ 𝐴 ) = ∅ ) ) |
| 16 | 9 15 | mpd | ⊢ ( 𝑅 ∈ Ring → ( 0g ‘ 𝐴 ) = ∅ ) |