This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate expression for the value of set exponentiation. (Contributed by NM, 3-Nov-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elmap.1 | ⊢ 𝐴 ∈ V | |
| elmap.2 | ⊢ 𝐵 ∈ V | ||
| Assertion | mapval2 | ⊢ ( 𝐴 ↑m 𝐵 ) = ( 𝒫 ( 𝐵 × 𝐴 ) ∩ { 𝑓 ∣ 𝑓 Fn 𝐵 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmap.1 | ⊢ 𝐴 ∈ V | |
| 2 | elmap.2 | ⊢ 𝐵 ∈ V | |
| 3 | dff2 | ⊢ ( 𝑔 : 𝐵 ⟶ 𝐴 ↔ ( 𝑔 Fn 𝐵 ∧ 𝑔 ⊆ ( 𝐵 × 𝐴 ) ) ) | |
| 4 | 3 | biancomi | ⊢ ( 𝑔 : 𝐵 ⟶ 𝐴 ↔ ( 𝑔 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑔 Fn 𝐵 ) ) |
| 5 | 1 2 | elmap | ⊢ ( 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ↔ 𝑔 : 𝐵 ⟶ 𝐴 ) |
| 6 | elin | ⊢ ( 𝑔 ∈ ( 𝒫 ( 𝐵 × 𝐴 ) ∩ { 𝑓 ∣ 𝑓 Fn 𝐵 } ) ↔ ( 𝑔 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∧ 𝑔 ∈ { 𝑓 ∣ 𝑓 Fn 𝐵 } ) ) | |
| 7 | velpw | ⊢ ( 𝑔 ∈ 𝒫 ( 𝐵 × 𝐴 ) ↔ 𝑔 ⊆ ( 𝐵 × 𝐴 ) ) | |
| 8 | vex | ⊢ 𝑔 ∈ V | |
| 9 | fneq1 | ⊢ ( 𝑓 = 𝑔 → ( 𝑓 Fn 𝐵 ↔ 𝑔 Fn 𝐵 ) ) | |
| 10 | 8 9 | elab | ⊢ ( 𝑔 ∈ { 𝑓 ∣ 𝑓 Fn 𝐵 } ↔ 𝑔 Fn 𝐵 ) |
| 11 | 7 10 | anbi12i | ⊢ ( ( 𝑔 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∧ 𝑔 ∈ { 𝑓 ∣ 𝑓 Fn 𝐵 } ) ↔ ( 𝑔 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑔 Fn 𝐵 ) ) |
| 12 | 6 11 | bitri | ⊢ ( 𝑔 ∈ ( 𝒫 ( 𝐵 × 𝐴 ) ∩ { 𝑓 ∣ 𝑓 Fn 𝐵 } ) ↔ ( 𝑔 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑔 Fn 𝐵 ) ) |
| 13 | 4 5 12 | 3bitr4i | ⊢ ( 𝑔 ∈ ( 𝐴 ↑m 𝐵 ) ↔ 𝑔 ∈ ( 𝒫 ( 𝐵 × 𝐴 ) ∩ { 𝑓 ∣ 𝑓 Fn 𝐵 } ) ) |
| 14 | 13 | eqriv | ⊢ ( 𝐴 ↑m 𝐵 ) = ( 𝒫 ( 𝐵 × 𝐴 ) ∩ { 𝑓 ∣ 𝑓 Fn 𝐵 } ) |