This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate expression for the value of set exponentiation. (Contributed by NM, 3-Nov-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elmap.1 | |- A e. _V |
|
| elmap.2 | |- B e. _V |
||
| Assertion | mapval2 | |- ( A ^m B ) = ( ~P ( B X. A ) i^i { f | f Fn B } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmap.1 | |- A e. _V |
|
| 2 | elmap.2 | |- B e. _V |
|
| 3 | dff2 | |- ( g : B --> A <-> ( g Fn B /\ g C_ ( B X. A ) ) ) |
|
| 4 | 3 | biancomi | |- ( g : B --> A <-> ( g C_ ( B X. A ) /\ g Fn B ) ) |
| 5 | 1 2 | elmap | |- ( g e. ( A ^m B ) <-> g : B --> A ) |
| 6 | elin | |- ( g e. ( ~P ( B X. A ) i^i { f | f Fn B } ) <-> ( g e. ~P ( B X. A ) /\ g e. { f | f Fn B } ) ) |
|
| 7 | velpw | |- ( g e. ~P ( B X. A ) <-> g C_ ( B X. A ) ) |
|
| 8 | vex | |- g e. _V |
|
| 9 | fneq1 | |- ( f = g -> ( f Fn B <-> g Fn B ) ) |
|
| 10 | 8 9 | elab | |- ( g e. { f | f Fn B } <-> g Fn B ) |
| 11 | 7 10 | anbi12i | |- ( ( g e. ~P ( B X. A ) /\ g e. { f | f Fn B } ) <-> ( g C_ ( B X. A ) /\ g Fn B ) ) |
| 12 | 6 11 | bitri | |- ( g e. ( ~P ( B X. A ) i^i { f | f Fn B } ) <-> ( g C_ ( B X. A ) /\ g Fn B ) ) |
| 13 | 4 5 12 | 3bitr4i | |- ( g e. ( A ^m B ) <-> g e. ( ~P ( B X. A ) i^i { f | f Fn B } ) ) |
| 14 | 13 | eqriv | |- ( A ^m B ) = ( ~P ( B X. A ) i^i { f | f Fn B } ) |