This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function exists iff an empty codomain is accompanied with an empty domain. (Contributed by Zhi Wang, 1-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | map0cor.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| map0cor.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | ||
| Assertion | map0cor | ⊢ ( 𝜑 → ( ( 𝐵 = ∅ → 𝐴 = ∅ ) ↔ ∃ 𝑓 𝑓 : 𝐴 ⟶ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | map0cor.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 2 | map0cor.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
| 3 | biid | ⊢ ( 𝐴 ≠ ∅ ↔ 𝐴 ≠ ∅ ) | |
| 4 | 3 | necon2bbii | ⊢ ( 𝐴 = ∅ ↔ ¬ 𝐴 ≠ ∅ ) |
| 5 | 4 | imbi2i | ⊢ ( ( 𝐵 = ∅ → 𝐴 = ∅ ) ↔ ( 𝐵 = ∅ → ¬ 𝐴 ≠ ∅ ) ) |
| 6 | imnan | ⊢ ( ( 𝐵 = ∅ → ¬ 𝐴 ≠ ∅ ) ↔ ¬ ( 𝐵 = ∅ ∧ 𝐴 ≠ ∅ ) ) | |
| 7 | 5 6 | bitri | ⊢ ( ( 𝐵 = ∅ → 𝐴 = ∅ ) ↔ ¬ ( 𝐵 = ∅ ∧ 𝐴 ≠ ∅ ) ) |
| 8 | map0g | ⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝐵 ↑m 𝐴 ) = ∅ ↔ ( 𝐵 = ∅ ∧ 𝐴 ≠ ∅ ) ) ) | |
| 9 | 8 | notbid | ⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ) → ( ¬ ( 𝐵 ↑m 𝐴 ) = ∅ ↔ ¬ ( 𝐵 = ∅ ∧ 𝐴 ≠ ∅ ) ) ) |
| 10 | 7 9 | bitr4id | ⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝐵 = ∅ → 𝐴 = ∅ ) ↔ ¬ ( 𝐵 ↑m 𝐴 ) = ∅ ) ) |
| 11 | neq0 | ⊢ ( ¬ ( 𝐵 ↑m 𝐴 ) = ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ) | |
| 12 | 11 | a1i | ⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ) → ( ¬ ( 𝐵 ↑m 𝐴 ) = ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ) ) |
| 13 | elmapg | ⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ) → ( 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ↔ 𝑓 : 𝐴 ⟶ 𝐵 ) ) | |
| 14 | 13 | exbidv | ⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ) → ( ∃ 𝑓 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ↔ ∃ 𝑓 𝑓 : 𝐴 ⟶ 𝐵 ) ) |
| 15 | 10 12 14 | 3bitrd | ⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝐵 = ∅ → 𝐴 = ∅ ) ↔ ∃ 𝑓 𝑓 : 𝐴 ⟶ 𝐵 ) ) |
| 16 | 2 1 15 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐵 = ∅ → 𝐴 = ∅ ) ↔ ∃ 𝑓 𝑓 : 𝐴 ⟶ 𝐵 ) ) |