This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function exists iff an empty codomain is accompanied with an empty domain. (Contributed by Zhi Wang, 1-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | map0cor.1 | |- ( ph -> A e. V ) |
|
| map0cor.2 | |- ( ph -> B e. W ) |
||
| Assertion | map0cor | |- ( ph -> ( ( B = (/) -> A = (/) ) <-> E. f f : A --> B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | map0cor.1 | |- ( ph -> A e. V ) |
|
| 2 | map0cor.2 | |- ( ph -> B e. W ) |
|
| 3 | biid | |- ( A =/= (/) <-> A =/= (/) ) |
|
| 4 | 3 | necon2bbii | |- ( A = (/) <-> -. A =/= (/) ) |
| 5 | 4 | imbi2i | |- ( ( B = (/) -> A = (/) ) <-> ( B = (/) -> -. A =/= (/) ) ) |
| 6 | imnan | |- ( ( B = (/) -> -. A =/= (/) ) <-> -. ( B = (/) /\ A =/= (/) ) ) |
|
| 7 | 5 6 | bitri | |- ( ( B = (/) -> A = (/) ) <-> -. ( B = (/) /\ A =/= (/) ) ) |
| 8 | map0g | |- ( ( B e. W /\ A e. V ) -> ( ( B ^m A ) = (/) <-> ( B = (/) /\ A =/= (/) ) ) ) |
|
| 9 | 8 | notbid | |- ( ( B e. W /\ A e. V ) -> ( -. ( B ^m A ) = (/) <-> -. ( B = (/) /\ A =/= (/) ) ) ) |
| 10 | 7 9 | bitr4id | |- ( ( B e. W /\ A e. V ) -> ( ( B = (/) -> A = (/) ) <-> -. ( B ^m A ) = (/) ) ) |
| 11 | neq0 | |- ( -. ( B ^m A ) = (/) <-> E. f f e. ( B ^m A ) ) |
|
| 12 | 11 | a1i | |- ( ( B e. W /\ A e. V ) -> ( -. ( B ^m A ) = (/) <-> E. f f e. ( B ^m A ) ) ) |
| 13 | elmapg | |- ( ( B e. W /\ A e. V ) -> ( f e. ( B ^m A ) <-> f : A --> B ) ) |
|
| 14 | 13 | exbidv | |- ( ( B e. W /\ A e. V ) -> ( E. f f e. ( B ^m A ) <-> E. f f : A --> B ) ) |
| 15 | 10 12 14 | 3bitrd | |- ( ( B e. W /\ A e. V ) -> ( ( B = (/) -> A = (/) ) <-> E. f f : A --> B ) ) |
| 16 | 2 1 15 | syl2anc | |- ( ph -> ( ( B = (/) -> A = (/) ) <-> E. f f : A --> B ) ) |