This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Main Theorem of Equivalences: every equivalence relation implies equivalent comembers. (Contributed by Peter Mazsa, 26-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mainer | ⊢ ( 𝑅 ErALTV 𝐴 → CoMembEr 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqvrelqseqdisj2 | ⊢ ( ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) → ElDisj 𝐴 ) | |
| 2 | eldisjim | ⊢ ( ElDisj 𝐴 → CoElEqvRel 𝐴 ) | |
| 3 | 1 2 | syl | ⊢ ( ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) → CoElEqvRel 𝐴 ) |
| 4 | n0eldmqseq | ⊢ ( ( dom 𝑅 / 𝑅 ) = 𝐴 → ¬ ∅ ∈ 𝐴 ) | |
| 5 | 4 | adantl | ⊢ ( ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) → ¬ ∅ ∈ 𝐴 ) |
| 6 | eldisjn0el | ⊢ ( ElDisj 𝐴 → ( ¬ ∅ ∈ 𝐴 ↔ ( ∪ 𝐴 / ∼ 𝐴 ) = 𝐴 ) ) | |
| 7 | 1 6 | syl | ⊢ ( ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) → ( ¬ ∅ ∈ 𝐴 ↔ ( ∪ 𝐴 / ∼ 𝐴 ) = 𝐴 ) ) |
| 8 | 5 7 | mpbid | ⊢ ( ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) → ( ∪ 𝐴 / ∼ 𝐴 ) = 𝐴 ) |
| 9 | 3 8 | jca | ⊢ ( ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) → ( CoElEqvRel 𝐴 ∧ ( ∪ 𝐴 / ∼ 𝐴 ) = 𝐴 ) ) |
| 10 | dferALTV2 | ⊢ ( 𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ) | |
| 11 | dfcomember3 | ⊢ ( CoMembEr 𝐴 ↔ ( CoElEqvRel 𝐴 ∧ ( ∪ 𝐴 / ∼ 𝐴 ) = 𝐴 ) ) | |
| 12 | 9 10 11 | 3imtr4i | ⊢ ( 𝑅 ErALTV 𝐴 → CoMembEr 𝐴 ) |