This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the elements of A are disjoint, then it has equivalent coelements (former prter1 ). Special case of disjim . (Contributed by Rodolfo Medina, 13-Oct-2010) (Revised by Mario Carneiro, 12-Aug-2015) (Revised by Peter Mazsa, 8-Feb-2018) ( Revised by Peter Mazsa, 23-Sep-2021.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eldisjim | ⊢ ( ElDisj 𝐴 → CoElEqvRel 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjim | ⊢ ( Disj ( ◡ E ↾ 𝐴 ) → EqvRel ≀ ( ◡ E ↾ 𝐴 ) ) | |
| 2 | df-eldisj | ⊢ ( ElDisj 𝐴 ↔ Disj ( ◡ E ↾ 𝐴 ) ) | |
| 3 | df-coeleqvrel | ⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ≀ ( ◡ E ↾ 𝐴 ) ) | |
| 4 | 1 2 3 | 3imtr4i | ⊢ ( ElDisj 𝐴 → CoElEqvRel 𝐴 ) |