This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Main Theorem of Equivalences: every equivalence relation implies equivalent comembers. (Contributed by Peter Mazsa, 26-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mainer | |- ( R ErALTV A -> CoMembEr A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqvrelqseqdisj2 | |- ( ( EqvRel R /\ ( dom R /. R ) = A ) -> ElDisj A ) |
|
| 2 | eldisjim | |- ( ElDisj A -> CoElEqvRel A ) |
|
| 3 | 1 2 | syl | |- ( ( EqvRel R /\ ( dom R /. R ) = A ) -> CoElEqvRel A ) |
| 4 | n0eldmqseq | |- ( ( dom R /. R ) = A -> -. (/) e. A ) |
|
| 5 | 4 | adantl | |- ( ( EqvRel R /\ ( dom R /. R ) = A ) -> -. (/) e. A ) |
| 6 | eldisjn0el | |- ( ElDisj A -> ( -. (/) e. A <-> ( U. A /. ~ A ) = A ) ) |
|
| 7 | 1 6 | syl | |- ( ( EqvRel R /\ ( dom R /. R ) = A ) -> ( -. (/) e. A <-> ( U. A /. ~ A ) = A ) ) |
| 8 | 5 7 | mpbid | |- ( ( EqvRel R /\ ( dom R /. R ) = A ) -> ( U. A /. ~ A ) = A ) |
| 9 | 3 8 | jca | |- ( ( EqvRel R /\ ( dom R /. R ) = A ) -> ( CoElEqvRel A /\ ( U. A /. ~ A ) = A ) ) |
| 10 | dferALTV2 | |- ( R ErALTV A <-> ( EqvRel R /\ ( dom R /. R ) = A ) ) |
|
| 11 | dfcomember3 | |- ( CoMembEr A <-> ( CoElEqvRel A /\ ( U. A /. ~ A ) = A ) ) |
|
| 12 | 9 10 11 | 3imtr4i | |- ( R ErALTV A -> CoMembEr A ) |