This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Special case of disjdmqseq (perhaps this is the closest theorem to the former prter2 ). (Contributed by Peter Mazsa, 26-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eldisjn0el | ⊢ ( ElDisj 𝐴 → ( ¬ ∅ ∈ 𝐴 ↔ ( ∪ 𝐴 / ∼ 𝐴 ) = 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjdmqseq | ⊢ ( Disj ( ◡ E ↾ 𝐴 ) → ( ( dom ( ◡ E ↾ 𝐴 ) / ( ◡ E ↾ 𝐴 ) ) = 𝐴 ↔ ( dom ≀ ( ◡ E ↾ 𝐴 ) / ≀ ( ◡ E ↾ 𝐴 ) ) = 𝐴 ) ) | |
| 2 | df-eldisj | ⊢ ( ElDisj 𝐴 ↔ Disj ( ◡ E ↾ 𝐴 ) ) | |
| 3 | n0el3 | ⊢ ( ¬ ∅ ∈ 𝐴 ↔ ( dom ( ◡ E ↾ 𝐴 ) / ( ◡ E ↾ 𝐴 ) ) = 𝐴 ) | |
| 4 | dmqs1cosscnvepreseq | ⊢ ( ( dom ≀ ( ◡ E ↾ 𝐴 ) / ≀ ( ◡ E ↾ 𝐴 ) ) = 𝐴 ↔ ( ∪ 𝐴 / ∼ 𝐴 ) = 𝐴 ) | |
| 5 | 4 | bicomi | ⊢ ( ( ∪ 𝐴 / ∼ 𝐴 ) = 𝐴 ↔ ( dom ≀ ( ◡ E ↾ 𝐴 ) / ≀ ( ◡ E ↾ 𝐴 ) ) = 𝐴 ) |
| 6 | 3 5 | bibi12i | ⊢ ( ( ¬ ∅ ∈ 𝐴 ↔ ( ∪ 𝐴 / ∼ 𝐴 ) = 𝐴 ) ↔ ( ( dom ( ◡ E ↾ 𝐴 ) / ( ◡ E ↾ 𝐴 ) ) = 𝐴 ↔ ( dom ≀ ( ◡ E ↾ 𝐴 ) / ≀ ( ◡ E ↾ 𝐴 ) ) = 𝐴 ) ) |
| 7 | 1 2 6 | 3imtr4i | ⊢ ( ElDisj 𝐴 → ( ¬ ∅ ∈ 𝐴 ↔ ( ∪ 𝐴 / ∼ 𝐴 ) = 𝐴 ) ) |