This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A summand of the determinant of a matrix belongs to the underlying ring. (Contributed by AV, 1-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | madetsmelbas.p | ⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
| madetsmelbas.s | ⊢ 𝑆 = ( pmSgn ‘ 𝑁 ) | ||
| madetsmelbas.y | ⊢ 𝑌 = ( ℤRHom ‘ 𝑅 ) | ||
| madetsmelbas.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | ||
| madetsmelbas.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | ||
| madetsmelbas.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) | ||
| Assertion | madetsmelbas | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑄 ∈ 𝑃 ) → ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑄 ) ( .r ‘ 𝑅 ) ( 𝐺 Σg ( 𝑛 ∈ 𝑁 ↦ ( ( 𝑄 ‘ 𝑛 ) 𝑀 𝑛 ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | madetsmelbas.p | ⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
| 2 | madetsmelbas.s | ⊢ 𝑆 = ( pmSgn ‘ 𝑁 ) | |
| 3 | madetsmelbas.y | ⊢ 𝑌 = ( ℤRHom ‘ 𝑅 ) | |
| 4 | madetsmelbas.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| 5 | madetsmelbas.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | |
| 6 | madetsmelbas.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) | |
| 7 | crngring | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) | |
| 8 | 7 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑄 ∈ 𝑃 ) → 𝑅 ∈ Ring ) |
| 9 | 4 5 | matrcl | ⊢ ( 𝑀 ∈ 𝐵 → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) ) |
| 10 | 9 | simpld | ⊢ ( 𝑀 ∈ 𝐵 → 𝑁 ∈ Fin ) |
| 11 | 10 | 3ad2ant2 | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑄 ∈ 𝑃 ) → 𝑁 ∈ Fin ) |
| 12 | simp3 | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑄 ∈ 𝑃 ) → 𝑄 ∈ 𝑃 ) | |
| 13 | 1 2 3 | zrhcopsgnelbas | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃 ) → ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑄 ) ∈ ( Base ‘ 𝑅 ) ) |
| 14 | 8 11 12 13 | syl3anc | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑄 ∈ 𝑃 ) → ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑄 ) ∈ ( Base ‘ 𝑅 ) ) |
| 15 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 16 | 6 15 | mgpbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝐺 ) |
| 17 | 6 | crngmgp | ⊢ ( 𝑅 ∈ CRing → 𝐺 ∈ CMnd ) |
| 18 | 17 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑄 ∈ 𝑃 ) → 𝐺 ∈ CMnd ) |
| 19 | simp2 | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑄 ∈ 𝑃 ) → 𝑀 ∈ 𝐵 ) | |
| 20 | 4 5 1 | matepmcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵 ) → ∀ 𝑛 ∈ 𝑁 ( ( 𝑄 ‘ 𝑛 ) 𝑀 𝑛 ) ∈ ( Base ‘ 𝑅 ) ) |
| 21 | 8 12 19 20 | syl3anc | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑄 ∈ 𝑃 ) → ∀ 𝑛 ∈ 𝑁 ( ( 𝑄 ‘ 𝑛 ) 𝑀 𝑛 ) ∈ ( Base ‘ 𝑅 ) ) |
| 22 | 16 18 11 21 | gsummptcl | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑄 ∈ 𝑃 ) → ( 𝐺 Σg ( 𝑛 ∈ 𝑁 ↦ ( ( 𝑄 ‘ 𝑛 ) 𝑀 𝑛 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 23 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 24 | 15 23 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑄 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐺 Σg ( 𝑛 ∈ 𝑁 ↦ ( ( 𝑄 ‘ 𝑛 ) 𝑀 𝑛 ) ) ) ∈ ( Base ‘ 𝑅 ) ) → ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑄 ) ( .r ‘ 𝑅 ) ( 𝐺 Σg ( 𝑛 ∈ 𝑁 ↦ ( ( 𝑄 ‘ 𝑛 ) 𝑀 𝑛 ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 25 | 8 14 22 24 | syl3anc | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑄 ∈ 𝑃 ) → ( ( ( 𝑌 ∘ 𝑆 ) ‘ 𝑄 ) ( .r ‘ 𝑅 ) ( 𝐺 Σg ( 𝑛 ∈ 𝑁 ↦ ( ( 𝑄 ‘ 𝑛 ) 𝑀 𝑛 ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |