This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A summand of the determinant of a matrix belongs to the underlying ring. (Contributed by AV, 1-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | madetsmelbas.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
| madetsmelbas.s | |- S = ( pmSgn ` N ) |
||
| madetsmelbas.y | |- Y = ( ZRHom ` R ) |
||
| madetsmelbas.a | |- A = ( N Mat R ) |
||
| madetsmelbas.b | |- B = ( Base ` A ) |
||
| madetsmelbas.g | |- G = ( mulGrp ` R ) |
||
| Assertion | madetsmelbas | |- ( ( R e. CRing /\ M e. B /\ Q e. P ) -> ( ( ( Y o. S ) ` Q ) ( .r ` R ) ( G gsum ( n e. N |-> ( ( Q ` n ) M n ) ) ) ) e. ( Base ` R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | madetsmelbas.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
| 2 | madetsmelbas.s | |- S = ( pmSgn ` N ) |
|
| 3 | madetsmelbas.y | |- Y = ( ZRHom ` R ) |
|
| 4 | madetsmelbas.a | |- A = ( N Mat R ) |
|
| 5 | madetsmelbas.b | |- B = ( Base ` A ) |
|
| 6 | madetsmelbas.g | |- G = ( mulGrp ` R ) |
|
| 7 | crngring | |- ( R e. CRing -> R e. Ring ) |
|
| 8 | 7 | 3ad2ant1 | |- ( ( R e. CRing /\ M e. B /\ Q e. P ) -> R e. Ring ) |
| 9 | 4 5 | matrcl | |- ( M e. B -> ( N e. Fin /\ R e. _V ) ) |
| 10 | 9 | simpld | |- ( M e. B -> N e. Fin ) |
| 11 | 10 | 3ad2ant2 | |- ( ( R e. CRing /\ M e. B /\ Q e. P ) -> N e. Fin ) |
| 12 | simp3 | |- ( ( R e. CRing /\ M e. B /\ Q e. P ) -> Q e. P ) |
|
| 13 | 1 2 3 | zrhcopsgnelbas | |- ( ( R e. Ring /\ N e. Fin /\ Q e. P ) -> ( ( Y o. S ) ` Q ) e. ( Base ` R ) ) |
| 14 | 8 11 12 13 | syl3anc | |- ( ( R e. CRing /\ M e. B /\ Q e. P ) -> ( ( Y o. S ) ` Q ) e. ( Base ` R ) ) |
| 15 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 16 | 6 15 | mgpbas | |- ( Base ` R ) = ( Base ` G ) |
| 17 | 6 | crngmgp | |- ( R e. CRing -> G e. CMnd ) |
| 18 | 17 | 3ad2ant1 | |- ( ( R e. CRing /\ M e. B /\ Q e. P ) -> G e. CMnd ) |
| 19 | simp2 | |- ( ( R e. CRing /\ M e. B /\ Q e. P ) -> M e. B ) |
|
| 20 | 4 5 1 | matepmcl | |- ( ( R e. Ring /\ Q e. P /\ M e. B ) -> A. n e. N ( ( Q ` n ) M n ) e. ( Base ` R ) ) |
| 21 | 8 12 19 20 | syl3anc | |- ( ( R e. CRing /\ M e. B /\ Q e. P ) -> A. n e. N ( ( Q ` n ) M n ) e. ( Base ` R ) ) |
| 22 | 16 18 11 21 | gsummptcl | |- ( ( R e. CRing /\ M e. B /\ Q e. P ) -> ( G gsum ( n e. N |-> ( ( Q ` n ) M n ) ) ) e. ( Base ` R ) ) |
| 23 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 24 | 15 23 | ringcl | |- ( ( R e. Ring /\ ( ( Y o. S ) ` Q ) e. ( Base ` R ) /\ ( G gsum ( n e. N |-> ( ( Q ` n ) M n ) ) ) e. ( Base ` R ) ) -> ( ( ( Y o. S ) ` Q ) ( .r ` R ) ( G gsum ( n e. N |-> ( ( Q ` n ) M n ) ) ) ) e. ( Base ` R ) ) |
| 25 | 8 14 22 24 | syl3anc | |- ( ( R e. CRing /\ M e. B /\ Q e. P ) -> ( ( ( Y o. S ) ` Q ) ( .r ` R ) ( G gsum ( n e. N |-> ( ( Q ` n ) M n ) ) ) ) e. ( Base ` R ) ) |