This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Minus one modulo an integer greater than two is greater than one. (Contributed by AV, 14-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | m1modge3gt1 | |- ( M e. ( ZZ>= ` 3 ) -> 1 < ( -u 1 mod M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1p1e2 | |- ( 1 + 1 ) = 2 |
|
| 2 | 2p1e3 | |- ( 2 + 1 ) = 3 |
|
| 3 | eluzle | |- ( M e. ( ZZ>= ` 3 ) -> 3 <_ M ) |
|
| 4 | 2 3 | eqbrtrid | |- ( M e. ( ZZ>= ` 3 ) -> ( 2 + 1 ) <_ M ) |
| 5 | 2z | |- 2 e. ZZ |
|
| 6 | eluzelz | |- ( M e. ( ZZ>= ` 3 ) -> M e. ZZ ) |
|
| 7 | zltp1le | |- ( ( 2 e. ZZ /\ M e. ZZ ) -> ( 2 < M <-> ( 2 + 1 ) <_ M ) ) |
|
| 8 | 5 6 7 | sylancr | |- ( M e. ( ZZ>= ` 3 ) -> ( 2 < M <-> ( 2 + 1 ) <_ M ) ) |
| 9 | 4 8 | mpbird | |- ( M e. ( ZZ>= ` 3 ) -> 2 < M ) |
| 10 | 1 9 | eqbrtrid | |- ( M e. ( ZZ>= ` 3 ) -> ( 1 + 1 ) < M ) |
| 11 | 1red | |- ( M e. ( ZZ>= ` 3 ) -> 1 e. RR ) |
|
| 12 | eluzelre | |- ( M e. ( ZZ>= ` 3 ) -> M e. RR ) |
|
| 13 | 11 11 12 | ltaddsub2d | |- ( M e. ( ZZ>= ` 3 ) -> ( ( 1 + 1 ) < M <-> 1 < ( M - 1 ) ) ) |
| 14 | 10 13 | mpbid | |- ( M e. ( ZZ>= ` 3 ) -> 1 < ( M - 1 ) ) |
| 15 | eluz3nn | |- ( M e. ( ZZ>= ` 3 ) -> M e. NN ) |
|
| 16 | m1modnnsub1 | |- ( M e. NN -> ( -u 1 mod M ) = ( M - 1 ) ) |
|
| 17 | 15 16 | syl | |- ( M e. ( ZZ>= ` 3 ) -> ( -u 1 mod M ) = ( M - 1 ) ) |
| 18 | 14 17 | breqtrrd | |- ( M e. ( ZZ>= ` 3 ) -> 1 < ( -u 1 mod M ) ) |