This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The greatest lower bound is the least element. (Contributed by NM, 22-Oct-2011) (Revised by NM, 7-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lubprop.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| lubprop.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| lubprop.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | ||
| lubprop.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | ||
| lubprop.s | ⊢ ( 𝜑 → 𝑆 ∈ dom 𝑈 ) | ||
| luble.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) | ||
| Assertion | luble | ⊢ ( 𝜑 → 𝑋 ≤ ( 𝑈 ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lubprop.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | lubprop.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | lubprop.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | |
| 4 | lubprop.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | |
| 5 | lubprop.s | ⊢ ( 𝜑 → 𝑆 ∈ dom 𝑈 ) | |
| 6 | luble.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) | |
| 7 | breq1 | ⊢ ( 𝑦 = 𝑋 → ( 𝑦 ≤ ( 𝑈 ‘ 𝑆 ) ↔ 𝑋 ≤ ( 𝑈 ‘ 𝑆 ) ) ) | |
| 8 | 1 2 3 4 5 | lubprop | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ ( 𝑈 ‘ 𝑆 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → ( 𝑈 ‘ 𝑆 ) ≤ 𝑧 ) ) ) |
| 9 | 8 | simpld | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑆 𝑦 ≤ ( 𝑈 ‘ 𝑆 ) ) |
| 10 | 7 9 6 | rspcdva | ⊢ ( 𝜑 → 𝑋 ≤ ( 𝑈 ‘ 𝑆 ) ) |