This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The least upper bound of a singleton. ( chsupsn analog.) (Contributed by NM, 20-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lubsn.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| lubsn.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | ||
| Assertion | lubsn | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) → ( 𝑈 ‘ { 𝑋 } ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lubsn.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | lubsn.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | |
| 3 | dfsn2 | ⊢ { 𝑋 } = { 𝑋 , 𝑋 } | |
| 4 | 3 | fveq2i | ⊢ ( 𝑈 ‘ { 𝑋 } ) = ( 𝑈 ‘ { 𝑋 , 𝑋 } ) |
| 5 | eqid | ⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) | |
| 6 | simpl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) → 𝐾 ∈ Lat ) | |
| 7 | simpr | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 8 | 2 5 6 7 7 | joinval | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ( join ‘ 𝐾 ) 𝑋 ) = ( 𝑈 ‘ { 𝑋 , 𝑋 } ) ) |
| 9 | 4 8 | eqtr4id | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) → ( 𝑈 ‘ { 𝑋 } ) = ( 𝑋 ( join ‘ 𝐾 ) 𝑋 ) ) |
| 10 | 1 5 | latjidm | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ( join ‘ 𝐾 ) 𝑋 ) = 𝑋 ) |
| 11 | 9 10 | eqtrd | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) → ( 𝑈 ‘ { 𝑋 } ) = 𝑋 ) |