This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The least upper bound of a singleton. ( chsupsn analog.) (Contributed by NM, 20-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lubsn.b | |- B = ( Base ` K ) |
|
| lubsn.u | |- U = ( lub ` K ) |
||
| Assertion | lubsn | |- ( ( K e. Lat /\ X e. B ) -> ( U ` { X } ) = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lubsn.b | |- B = ( Base ` K ) |
|
| 2 | lubsn.u | |- U = ( lub ` K ) |
|
| 3 | dfsn2 | |- { X } = { X , X } |
|
| 4 | 3 | fveq2i | |- ( U ` { X } ) = ( U ` { X , X } ) |
| 5 | eqid | |- ( join ` K ) = ( join ` K ) |
|
| 6 | simpl | |- ( ( K e. Lat /\ X e. B ) -> K e. Lat ) |
|
| 7 | simpr | |- ( ( K e. Lat /\ X e. B ) -> X e. B ) |
|
| 8 | 2 5 6 7 7 | joinval | |- ( ( K e. Lat /\ X e. B ) -> ( X ( join ` K ) X ) = ( U ` { X , X } ) ) |
| 9 | 4 8 | eqtr4id | |- ( ( K e. Lat /\ X e. B ) -> ( U ` { X } ) = ( X ( join ` K ) X ) ) |
| 10 | 1 5 | latjidm | |- ( ( K e. Lat /\ X e. B ) -> ( X ( join ` K ) X ) = X ) |
| 11 | 9 10 | eqtrd | |- ( ( K e. Lat /\ X e. B ) -> ( U ` { X } ) = X ) |