This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define ordering on positive reals. This is a "temporary" set used in the construction of complex numbers df-c , and is intended to be used only by the construction. From Proposition 9-3.2 of Gleason p. 122. (Contributed by NM, 14-Feb-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ltp | ⊢ <P = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ 𝑥 ⊊ 𝑦 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cltp | ⊢ <P | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | vy | ⊢ 𝑦 | |
| 3 | 1 | cv | ⊢ 𝑥 |
| 4 | cnp | ⊢ P | |
| 5 | 3 4 | wcel | ⊢ 𝑥 ∈ P |
| 6 | 2 | cv | ⊢ 𝑦 |
| 7 | 6 4 | wcel | ⊢ 𝑦 ∈ P |
| 8 | 5 7 | wa | ⊢ ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) |
| 9 | 3 6 | wpss | ⊢ 𝑥 ⊊ 𝑦 |
| 10 | 8 9 | wa | ⊢ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ 𝑥 ⊊ 𝑦 ) |
| 11 | 10 1 2 | copab | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ 𝑥 ⊊ 𝑦 ) } |
| 12 | 0 11 | wceq | ⊢ <P = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ P ∧ 𝑦 ∈ P ) ∧ 𝑥 ⊊ 𝑦 ) } |