This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The singleton of the zero vector is a subspace. (Contributed by NM, 13-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lss0cl.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| lss0cl.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| Assertion | lsssn0 | ⊢ ( 𝑊 ∈ LMod → { 0 } ∈ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lss0cl.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 2 | lss0cl.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 3 | eqidd | ⊢ ( 𝑊 ∈ LMod → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) ) | |
| 4 | eqidd | ⊢ ( 𝑊 ∈ LMod → ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | |
| 5 | eqidd | ⊢ ( 𝑊 ∈ LMod → ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) ) | |
| 6 | eqidd | ⊢ ( 𝑊 ∈ LMod → ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) ) | |
| 7 | eqidd | ⊢ ( 𝑊 ∈ LMod → ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) ) | |
| 8 | 2 | a1i | ⊢ ( 𝑊 ∈ LMod → 𝑆 = ( LSubSp ‘ 𝑊 ) ) |
| 9 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 10 | 9 1 | lmod0vcl | ⊢ ( 𝑊 ∈ LMod → 0 ∈ ( Base ‘ 𝑊 ) ) |
| 11 | 10 | snssd | ⊢ ( 𝑊 ∈ LMod → { 0 } ⊆ ( Base ‘ 𝑊 ) ) |
| 12 | 1 | fvexi | ⊢ 0 ∈ V |
| 13 | 12 | snnz | ⊢ { 0 } ≠ ∅ |
| 14 | 13 | a1i | ⊢ ( 𝑊 ∈ LMod → { 0 } ≠ ∅ ) |
| 15 | simpr2 | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 } ) ) → 𝑎 ∈ { 0 } ) | |
| 16 | elsni | ⊢ ( 𝑎 ∈ { 0 } → 𝑎 = 0 ) | |
| 17 | 15 16 | syl | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 } ) ) → 𝑎 = 0 ) |
| 18 | 17 | oveq2d | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 } ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 0 ) ) |
| 19 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 20 | eqid | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) | |
| 21 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 22 | 19 20 21 1 | lmodvs0 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 0 ) = 0 ) |
| 23 | 22 | 3ad2antr1 | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 } ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 0 ) = 0 ) |
| 24 | 18 23 | eqtrd | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 } ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) = 0 ) |
| 25 | simpr3 | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 } ) ) → 𝑏 ∈ { 0 } ) | |
| 26 | elsni | ⊢ ( 𝑏 ∈ { 0 } → 𝑏 = 0 ) | |
| 27 | 25 26 | syl | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 } ) ) → 𝑏 = 0 ) |
| 28 | 24 27 | oveq12d | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 } ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ( +g ‘ 𝑊 ) 𝑏 ) = ( 0 ( +g ‘ 𝑊 ) 0 ) ) |
| 29 | eqid | ⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) | |
| 30 | 9 29 1 | lmod0vlid | ⊢ ( ( 𝑊 ∈ LMod ∧ 0 ∈ ( Base ‘ 𝑊 ) ) → ( 0 ( +g ‘ 𝑊 ) 0 ) = 0 ) |
| 31 | 10 30 | mpdan | ⊢ ( 𝑊 ∈ LMod → ( 0 ( +g ‘ 𝑊 ) 0 ) = 0 ) |
| 32 | 31 | adantr | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 } ) ) → ( 0 ( +g ‘ 𝑊 ) 0 ) = 0 ) |
| 33 | 28 32 | eqtrd | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 } ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ( +g ‘ 𝑊 ) 𝑏 ) = 0 ) |
| 34 | ovex | ⊢ ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ( +g ‘ 𝑊 ) 𝑏 ) ∈ V | |
| 35 | 34 | elsn | ⊢ ( ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ( +g ‘ 𝑊 ) 𝑏 ) ∈ { 0 } ↔ ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ( +g ‘ 𝑊 ) 𝑏 ) = 0 ) |
| 36 | 33 35 | sylibr | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 } ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑎 ) ( +g ‘ 𝑊 ) 𝑏 ) ∈ { 0 } ) |
| 37 | 3 4 5 6 7 8 11 14 36 | islssd | ⊢ ( 𝑊 ∈ LMod → { 0 } ∈ 𝑆 ) |