This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The singleton of the zero vector is a subspace. (Contributed by NM, 13-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lss0cl.z | |- .0. = ( 0g ` W ) |
|
| lss0cl.s | |- S = ( LSubSp ` W ) |
||
| Assertion | lsssn0 | |- ( W e. LMod -> { .0. } e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lss0cl.z | |- .0. = ( 0g ` W ) |
|
| 2 | lss0cl.s | |- S = ( LSubSp ` W ) |
|
| 3 | eqidd | |- ( W e. LMod -> ( Scalar ` W ) = ( Scalar ` W ) ) |
|
| 4 | eqidd | |- ( W e. LMod -> ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) ) |
|
| 5 | eqidd | |- ( W e. LMod -> ( Base ` W ) = ( Base ` W ) ) |
|
| 6 | eqidd | |- ( W e. LMod -> ( +g ` W ) = ( +g ` W ) ) |
|
| 7 | eqidd | |- ( W e. LMod -> ( .s ` W ) = ( .s ` W ) ) |
|
| 8 | 2 | a1i | |- ( W e. LMod -> S = ( LSubSp ` W ) ) |
| 9 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 10 | 9 1 | lmod0vcl | |- ( W e. LMod -> .0. e. ( Base ` W ) ) |
| 11 | 10 | snssd | |- ( W e. LMod -> { .0. } C_ ( Base ` W ) ) |
| 12 | 1 | fvexi | |- .0. e. _V |
| 13 | 12 | snnz | |- { .0. } =/= (/) |
| 14 | 13 | a1i | |- ( W e. LMod -> { .0. } =/= (/) ) |
| 15 | simpr2 | |- ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. { .0. } /\ b e. { .0. } ) ) -> a e. { .0. } ) |
|
| 16 | elsni | |- ( a e. { .0. } -> a = .0. ) |
|
| 17 | 15 16 | syl | |- ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. { .0. } /\ b e. { .0. } ) ) -> a = .0. ) |
| 18 | 17 | oveq2d | |- ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. { .0. } /\ b e. { .0. } ) ) -> ( x ( .s ` W ) a ) = ( x ( .s ` W ) .0. ) ) |
| 19 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 20 | eqid | |- ( .s ` W ) = ( .s ` W ) |
|
| 21 | eqid | |- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
|
| 22 | 19 20 21 1 | lmodvs0 | |- ( ( W e. LMod /\ x e. ( Base ` ( Scalar ` W ) ) ) -> ( x ( .s ` W ) .0. ) = .0. ) |
| 23 | 22 | 3ad2antr1 | |- ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. { .0. } /\ b e. { .0. } ) ) -> ( x ( .s ` W ) .0. ) = .0. ) |
| 24 | 18 23 | eqtrd | |- ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. { .0. } /\ b e. { .0. } ) ) -> ( x ( .s ` W ) a ) = .0. ) |
| 25 | simpr3 | |- ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. { .0. } /\ b e. { .0. } ) ) -> b e. { .0. } ) |
|
| 26 | elsni | |- ( b e. { .0. } -> b = .0. ) |
|
| 27 | 25 26 | syl | |- ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. { .0. } /\ b e. { .0. } ) ) -> b = .0. ) |
| 28 | 24 27 | oveq12d | |- ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. { .0. } /\ b e. { .0. } ) ) -> ( ( x ( .s ` W ) a ) ( +g ` W ) b ) = ( .0. ( +g ` W ) .0. ) ) |
| 29 | eqid | |- ( +g ` W ) = ( +g ` W ) |
|
| 30 | 9 29 1 | lmod0vlid | |- ( ( W e. LMod /\ .0. e. ( Base ` W ) ) -> ( .0. ( +g ` W ) .0. ) = .0. ) |
| 31 | 10 30 | mpdan | |- ( W e. LMod -> ( .0. ( +g ` W ) .0. ) = .0. ) |
| 32 | 31 | adantr | |- ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. { .0. } /\ b e. { .0. } ) ) -> ( .0. ( +g ` W ) .0. ) = .0. ) |
| 33 | 28 32 | eqtrd | |- ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. { .0. } /\ b e. { .0. } ) ) -> ( ( x ( .s ` W ) a ) ( +g ` W ) b ) = .0. ) |
| 34 | ovex | |- ( ( x ( .s ` W ) a ) ( +g ` W ) b ) e. _V |
|
| 35 | 34 | elsn | |- ( ( ( x ( .s ` W ) a ) ( +g ` W ) b ) e. { .0. } <-> ( ( x ( .s ` W ) a ) ( +g ` W ) b ) = .0. ) |
| 36 | 33 35 | sylibr | |- ( ( W e. LMod /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ a e. { .0. } /\ b e. { .0. } ) ) -> ( ( x ( .s ` W ) a ) ( +g ` W ) b ) e. { .0. } ) |
| 37 | 3 4 5 6 7 8 11 14 36 | islssd | |- ( W e. LMod -> { .0. } e. S ) |