This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of all (not necessarily closed) linear subspaces of a left module or left vector space. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 15-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lssset.f | |- F = ( Scalar ` W ) |
|
| lssset.b | |- B = ( Base ` F ) |
||
| lssset.v | |- V = ( Base ` W ) |
||
| lssset.p | |- .+ = ( +g ` W ) |
||
| lssset.t | |- .x. = ( .s ` W ) |
||
| lssset.s | |- S = ( LSubSp ` W ) |
||
| Assertion | lssset | |- ( W e. X -> S = { s e. ( ~P V \ { (/) } ) | A. x e. B A. a e. s A. b e. s ( ( x .x. a ) .+ b ) e. s } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssset.f | |- F = ( Scalar ` W ) |
|
| 2 | lssset.b | |- B = ( Base ` F ) |
|
| 3 | lssset.v | |- V = ( Base ` W ) |
|
| 4 | lssset.p | |- .+ = ( +g ` W ) |
|
| 5 | lssset.t | |- .x. = ( .s ` W ) |
|
| 6 | lssset.s | |- S = ( LSubSp ` W ) |
|
| 7 | elex | |- ( W e. X -> W e. _V ) |
|
| 8 | fveq2 | |- ( w = W -> ( Base ` w ) = ( Base ` W ) ) |
|
| 9 | 8 3 | eqtr4di | |- ( w = W -> ( Base ` w ) = V ) |
| 10 | 9 | pweqd | |- ( w = W -> ~P ( Base ` w ) = ~P V ) |
| 11 | 10 | difeq1d | |- ( w = W -> ( ~P ( Base ` w ) \ { (/) } ) = ( ~P V \ { (/) } ) ) |
| 12 | fveq2 | |- ( w = W -> ( Scalar ` w ) = ( Scalar ` W ) ) |
|
| 13 | 12 1 | eqtr4di | |- ( w = W -> ( Scalar ` w ) = F ) |
| 14 | 13 | fveq2d | |- ( w = W -> ( Base ` ( Scalar ` w ) ) = ( Base ` F ) ) |
| 15 | 14 2 | eqtr4di | |- ( w = W -> ( Base ` ( Scalar ` w ) ) = B ) |
| 16 | fveq2 | |- ( w = W -> ( .s ` w ) = ( .s ` W ) ) |
|
| 17 | 16 5 | eqtr4di | |- ( w = W -> ( .s ` w ) = .x. ) |
| 18 | 17 | oveqd | |- ( w = W -> ( x ( .s ` w ) a ) = ( x .x. a ) ) |
| 19 | 18 | oveq1d | |- ( w = W -> ( ( x ( .s ` w ) a ) ( +g ` w ) b ) = ( ( x .x. a ) ( +g ` w ) b ) ) |
| 20 | fveq2 | |- ( w = W -> ( +g ` w ) = ( +g ` W ) ) |
|
| 21 | 20 4 | eqtr4di | |- ( w = W -> ( +g ` w ) = .+ ) |
| 22 | 21 | oveqd | |- ( w = W -> ( ( x .x. a ) ( +g ` w ) b ) = ( ( x .x. a ) .+ b ) ) |
| 23 | 19 22 | eqtrd | |- ( w = W -> ( ( x ( .s ` w ) a ) ( +g ` w ) b ) = ( ( x .x. a ) .+ b ) ) |
| 24 | 23 | eleq1d | |- ( w = W -> ( ( ( x ( .s ` w ) a ) ( +g ` w ) b ) e. s <-> ( ( x .x. a ) .+ b ) e. s ) ) |
| 25 | 24 | 2ralbidv | |- ( w = W -> ( A. a e. s A. b e. s ( ( x ( .s ` w ) a ) ( +g ` w ) b ) e. s <-> A. a e. s A. b e. s ( ( x .x. a ) .+ b ) e. s ) ) |
| 26 | 15 25 | raleqbidv | |- ( w = W -> ( A. x e. ( Base ` ( Scalar ` w ) ) A. a e. s A. b e. s ( ( x ( .s ` w ) a ) ( +g ` w ) b ) e. s <-> A. x e. B A. a e. s A. b e. s ( ( x .x. a ) .+ b ) e. s ) ) |
| 27 | 11 26 | rabeqbidv | |- ( w = W -> { s e. ( ~P ( Base ` w ) \ { (/) } ) | A. x e. ( Base ` ( Scalar ` w ) ) A. a e. s A. b e. s ( ( x ( .s ` w ) a ) ( +g ` w ) b ) e. s } = { s e. ( ~P V \ { (/) } ) | A. x e. B A. a e. s A. b e. s ( ( x .x. a ) .+ b ) e. s } ) |
| 28 | df-lss | |- LSubSp = ( w e. _V |-> { s e. ( ~P ( Base ` w ) \ { (/) } ) | A. x e. ( Base ` ( Scalar ` w ) ) A. a e. s A. b e. s ( ( x ( .s ` w ) a ) ( +g ` w ) b ) e. s } ) |
|
| 29 | 3 | fvexi | |- V e. _V |
| 30 | 29 | pwex | |- ~P V e. _V |
| 31 | 30 | difexi | |- ( ~P V \ { (/) } ) e. _V |
| 32 | 31 | rabex | |- { s e. ( ~P V \ { (/) } ) | A. x e. B A. a e. s A. b e. s ( ( x .x. a ) .+ b ) e. s } e. _V |
| 33 | 27 28 32 | fvmpt | |- ( W e. _V -> ( LSubSp ` W ) = { s e. ( ~P V \ { (/) } ) | A. x e. B A. a e. s A. b e. s ( ( x .x. a ) .+ b ) e. s } ) |
| 34 | 7 33 | syl | |- ( W e. X -> ( LSubSp ` W ) = { s e. ( ~P V \ { (/) } ) | A. x e. B A. a e. s A. b e. s ( ( x .x. a ) .+ b ) e. s } ) |
| 35 | 6 34 | eqtrid | |- ( W e. X -> S = { s e. ( ~P V \ { (/) } ) | A. x e. B A. a e. s A. b e. s ( ( x .x. a ) .+ b ) e. s } ) |