This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property for modules to be vector spaces is invariant under module isomorphism. (Contributed by Steven Nguyen, 15-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lmhmlvec | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( 𝑆 ∈ LVec ↔ 𝑇 ∈ LVec ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmhmlmod1 | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝑆 ∈ LMod ) | |
| 2 | lmhmlmod2 | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝑇 ∈ LMod ) | |
| 3 | 1 2 | 2thd | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( 𝑆 ∈ LMod ↔ 𝑇 ∈ LMod ) ) |
| 4 | eqid | ⊢ ( Scalar ‘ 𝑆 ) = ( Scalar ‘ 𝑆 ) | |
| 5 | eqid | ⊢ ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑇 ) | |
| 6 | 4 5 | lmhmsca | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑆 ) ) |
| 7 | 6 | eqcomd | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( Scalar ‘ 𝑆 ) = ( Scalar ‘ 𝑇 ) ) |
| 8 | 7 | eleq1d | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( ( Scalar ‘ 𝑆 ) ∈ DivRing ↔ ( Scalar ‘ 𝑇 ) ∈ DivRing ) ) |
| 9 | 3 8 | anbi12d | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( ( 𝑆 ∈ LMod ∧ ( Scalar ‘ 𝑆 ) ∈ DivRing ) ↔ ( 𝑇 ∈ LMod ∧ ( Scalar ‘ 𝑇 ) ∈ DivRing ) ) ) |
| 10 | 4 | islvec | ⊢ ( 𝑆 ∈ LVec ↔ ( 𝑆 ∈ LMod ∧ ( Scalar ‘ 𝑆 ) ∈ DivRing ) ) |
| 11 | 5 | islvec | ⊢ ( 𝑇 ∈ LVec ↔ ( 𝑇 ∈ LMod ∧ ( Scalar ‘ 𝑇 ) ∈ DivRing ) ) |
| 12 | 9 10 11 | 3bitr4g | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( 𝑆 ∈ LVec ↔ 𝑇 ∈ LVec ) ) |