This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A vector subspace is a vector space. (Contributed by NM, 14-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsslvec.x | |- X = ( W |`s U ) |
|
| lsslvec.s | |- S = ( LSubSp ` W ) |
||
| Assertion | lsslvec | |- ( ( W e. LVec /\ U e. S ) -> X e. LVec ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsslvec.x | |- X = ( W |`s U ) |
|
| 2 | lsslvec.s | |- S = ( LSubSp ` W ) |
|
| 3 | lveclmod | |- ( W e. LVec -> W e. LMod ) |
|
| 4 | 1 2 | lsslmod | |- ( ( W e. LMod /\ U e. S ) -> X e. LMod ) |
| 5 | 3 4 | sylan | |- ( ( W e. LVec /\ U e. S ) -> X e. LMod ) |
| 6 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 7 | 1 6 | resssca | |- ( U e. S -> ( Scalar ` W ) = ( Scalar ` X ) ) |
| 8 | 7 | adantl | |- ( ( W e. LVec /\ U e. S ) -> ( Scalar ` W ) = ( Scalar ` X ) ) |
| 9 | 6 | lvecdrng | |- ( W e. LVec -> ( Scalar ` W ) e. DivRing ) |
| 10 | 9 | adantr | |- ( ( W e. LVec /\ U e. S ) -> ( Scalar ` W ) e. DivRing ) |
| 11 | 8 10 | eqeltrrd | |- ( ( W e. LVec /\ U e. S ) -> ( Scalar ` X ) e. DivRing ) |
| 12 | eqid | |- ( Scalar ` X ) = ( Scalar ` X ) |
|
| 13 | 12 | islvec | |- ( X e. LVec <-> ( X e. LMod /\ ( Scalar ` X ) e. DivRing ) ) |
| 14 | 5 11 13 | sylanbrc | |- ( ( W e. LVec /\ U e. S ) -> X e. LVec ) |