This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The span of an unordered triple is a subspace (frequently used special case of lspcl ). (Contributed by NM, 22-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspval.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspval.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| lspval.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lspprcl.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| lspprcl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| lspprcl.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| lsptpcl.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) | ||
| Assertion | lsptpcl | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 , 𝑍 } ) ∈ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspval.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspval.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 3 | lspval.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 4 | lspprcl.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 5 | lspprcl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 6 | lspprcl.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 7 | lsptpcl.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) | |
| 8 | df-tp | ⊢ { 𝑋 , 𝑌 , 𝑍 } = ( { 𝑋 , 𝑌 } ∪ { 𝑍 } ) | |
| 9 | 5 6 | prssd | ⊢ ( 𝜑 → { 𝑋 , 𝑌 } ⊆ 𝑉 ) |
| 10 | 7 | snssd | ⊢ ( 𝜑 → { 𝑍 } ⊆ 𝑉 ) |
| 11 | 9 10 | unssd | ⊢ ( 𝜑 → ( { 𝑋 , 𝑌 } ∪ { 𝑍 } ) ⊆ 𝑉 ) |
| 12 | 8 11 | eqsstrid | ⊢ ( 𝜑 → { 𝑋 , 𝑌 , 𝑍 } ⊆ 𝑉 ) |
| 13 | 1 2 3 | lspcl | ⊢ ( ( 𝑊 ∈ LMod ∧ { 𝑋 , 𝑌 , 𝑍 } ⊆ 𝑉 ) → ( 𝑁 ‘ { 𝑋 , 𝑌 , 𝑍 } ) ∈ 𝑆 ) |
| 14 | 4 12 13 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 , 𝑍 } ) ∈ 𝑆 ) |