This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: The span of an unordered triple is a subspace (frequently used special
case of lspcl ). (Contributed by NM, 22-May-2015)
|
|
Ref |
Expression |
|
Hypotheses |
lspval.v |
|
|
|
lspval.s |
|
|
|
lspval.n |
|
|
|
lspprcl.w |
|
|
|
lspprcl.x |
|
|
|
lspprcl.y |
|
|
|
lsptpcl.z |
|
|
Assertion |
lsptpcl |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspval.v |
|
| 2 |
|
lspval.s |
|
| 3 |
|
lspval.n |
|
| 4 |
|
lspprcl.w |
|
| 5 |
|
lspprcl.x |
|
| 6 |
|
lspprcl.y |
|
| 7 |
|
lsptpcl.z |
|
| 8 |
|
df-tp |
|
| 9 |
5 6
|
prssd |
|
| 10 |
7
|
snssd |
|
| 11 |
9 10
|
unssd |
|
| 12 |
8 11
|
eqsstrid |
|
| 13 |
1 2 3
|
lspcl |
|
| 14 |
4 12 13
|
syl2anc |
|