This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The span of an unordered triple is a subspace (frequently used special case of lspcl ). (Contributed by NM, 22-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspval.v | |- V = ( Base ` W ) |
|
| lspval.s | |- S = ( LSubSp ` W ) |
||
| lspval.n | |- N = ( LSpan ` W ) |
||
| lspprcl.w | |- ( ph -> W e. LMod ) |
||
| lspprcl.x | |- ( ph -> X e. V ) |
||
| lspprcl.y | |- ( ph -> Y e. V ) |
||
| lsptpcl.z | |- ( ph -> Z e. V ) |
||
| Assertion | lsptpcl | |- ( ph -> ( N ` { X , Y , Z } ) e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspval.v | |- V = ( Base ` W ) |
|
| 2 | lspval.s | |- S = ( LSubSp ` W ) |
|
| 3 | lspval.n | |- N = ( LSpan ` W ) |
|
| 4 | lspprcl.w | |- ( ph -> W e. LMod ) |
|
| 5 | lspprcl.x | |- ( ph -> X e. V ) |
|
| 6 | lspprcl.y | |- ( ph -> Y e. V ) |
|
| 7 | lsptpcl.z | |- ( ph -> Z e. V ) |
|
| 8 | df-tp | |- { X , Y , Z } = ( { X , Y } u. { Z } ) |
|
| 9 | 5 6 | prssd | |- ( ph -> { X , Y } C_ V ) |
| 10 | 7 | snssd | |- ( ph -> { Z } C_ V ) |
| 11 | 9 10 | unssd | |- ( ph -> ( { X , Y } u. { Z } ) C_ V ) |
| 12 | 8 11 | eqsstrid | |- ( ph -> { X , Y , Z } C_ V ) |
| 13 | 1 2 3 | lspcl | |- ( ( W e. LMod /\ { X , Y , Z } C_ V ) -> ( N ` { X , Y , Z } ) e. S ) |
| 14 | 4 12 13 | syl2anc | |- ( ph -> ( N ` { X , Y , Z } ) e. S ) |