This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Partial independence property. (Contributed by NM, 23-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspindpi.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspindpi.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lspindpi.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | ||
| lspindpi.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| lspindpi.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| lspindpi.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) | ||
| lspindpi.e | ⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) | ||
| Assertion | lspindpi | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ∧ ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspindpi.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspindpi.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 3 | lspindpi.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | |
| 4 | lspindpi.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 5 | lspindpi.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 6 | lspindpi.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) | |
| 7 | lspindpi.e | ⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) | |
| 8 | lveclmod | ⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) | |
| 9 | 3 8 | syl | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 10 | eqid | ⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) | |
| 11 | 10 | lsssssubg | ⊢ ( 𝑊 ∈ LMod → ( LSubSp ‘ 𝑊 ) ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 12 | 9 11 | syl | ⊢ ( 𝜑 → ( LSubSp ‘ 𝑊 ) ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 13 | 1 10 2 | lspsncl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 14 | 9 5 13 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 15 | 12 14 | sseldd | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 16 | 1 10 2 | lspsncl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑍 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑍 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 17 | 9 6 16 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑍 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 18 | 12 17 | sseldd | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑍 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 19 | eqid | ⊢ ( LSSum ‘ 𝑊 ) = ( LSSum ‘ 𝑊 ) | |
| 20 | 19 | lsmub1 | ⊢ ( ( ( 𝑁 ‘ { 𝑌 } ) ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑁 ‘ { 𝑍 } ) ∈ ( SubGrp ‘ 𝑊 ) ) → ( 𝑁 ‘ { 𝑌 } ) ⊆ ( ( 𝑁 ‘ { 𝑌 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑍 } ) ) ) |
| 21 | 15 18 20 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ⊆ ( ( 𝑁 ‘ { 𝑌 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑍 } ) ) ) |
| 22 | 1 2 19 9 5 6 | lsmpr | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 , 𝑍 } ) = ( ( 𝑁 ‘ { 𝑌 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑍 } ) ) ) |
| 23 | 21 22 | sseqtrrd | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ⊆ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) |
| 24 | sseq1 | ⊢ ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) → ( ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ↔ ( 𝑁 ‘ { 𝑌 } ) ⊆ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) ) | |
| 25 | 23 24 | syl5ibrcom | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) ) |
| 26 | 1 10 2 9 5 6 | lspprcl | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 27 | 1 10 2 9 26 4 | ellspsn5b | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ↔ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) ) |
| 28 | 25 27 | sylibrd | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) ) |
| 29 | 28 | necon3bd | ⊢ ( 𝜑 → ( ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 30 | 7 29 | mpd | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
| 31 | 19 | lsmub2 | ⊢ ( ( ( 𝑁 ‘ { 𝑌 } ) ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑁 ‘ { 𝑍 } ) ∈ ( SubGrp ‘ 𝑊 ) ) → ( 𝑁 ‘ { 𝑍 } ) ⊆ ( ( 𝑁 ‘ { 𝑌 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑍 } ) ) ) |
| 32 | 15 18 31 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑍 } ) ⊆ ( ( 𝑁 ‘ { 𝑌 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑍 } ) ) ) |
| 33 | 32 22 | sseqtrrd | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑍 } ) ⊆ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) |
| 34 | sseq1 | ⊢ ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑍 } ) → ( ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ↔ ( 𝑁 ‘ { 𝑍 } ) ⊆ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) ) | |
| 35 | 33 34 | syl5ibrcom | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑍 } ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) ) |
| 36 | 35 27 | sylibrd | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑍 } ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) ) ) |
| 37 | 36 | necon3bd | ⊢ ( 𝜑 → ( ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ) ) |
| 38 | 7 37 | mpd | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ) |
| 39 | 30 38 | jca | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ∧ ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑍 } ) ) ) |