This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Partial independence property. (Contributed by NM, 23-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspindpi.v | |- V = ( Base ` W ) |
|
| lspindpi.n | |- N = ( LSpan ` W ) |
||
| lspindpi.w | |- ( ph -> W e. LVec ) |
||
| lspindpi.x | |- ( ph -> X e. V ) |
||
| lspindpi.y | |- ( ph -> Y e. V ) |
||
| lspindpi.z | |- ( ph -> Z e. V ) |
||
| lspindpi.e | |- ( ph -> -. X e. ( N ` { Y , Z } ) ) |
||
| Assertion | lspindpi | |- ( ph -> ( ( N ` { X } ) =/= ( N ` { Y } ) /\ ( N ` { X } ) =/= ( N ` { Z } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspindpi.v | |- V = ( Base ` W ) |
|
| 2 | lspindpi.n | |- N = ( LSpan ` W ) |
|
| 3 | lspindpi.w | |- ( ph -> W e. LVec ) |
|
| 4 | lspindpi.x | |- ( ph -> X e. V ) |
|
| 5 | lspindpi.y | |- ( ph -> Y e. V ) |
|
| 6 | lspindpi.z | |- ( ph -> Z e. V ) |
|
| 7 | lspindpi.e | |- ( ph -> -. X e. ( N ` { Y , Z } ) ) |
|
| 8 | lveclmod | |- ( W e. LVec -> W e. LMod ) |
|
| 9 | 3 8 | syl | |- ( ph -> W e. LMod ) |
| 10 | eqid | |- ( LSubSp ` W ) = ( LSubSp ` W ) |
|
| 11 | 10 | lsssssubg | |- ( W e. LMod -> ( LSubSp ` W ) C_ ( SubGrp ` W ) ) |
| 12 | 9 11 | syl | |- ( ph -> ( LSubSp ` W ) C_ ( SubGrp ` W ) ) |
| 13 | 1 10 2 | lspsncl | |- ( ( W e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` W ) ) |
| 14 | 9 5 13 | syl2anc | |- ( ph -> ( N ` { Y } ) e. ( LSubSp ` W ) ) |
| 15 | 12 14 | sseldd | |- ( ph -> ( N ` { Y } ) e. ( SubGrp ` W ) ) |
| 16 | 1 10 2 | lspsncl | |- ( ( W e. LMod /\ Z e. V ) -> ( N ` { Z } ) e. ( LSubSp ` W ) ) |
| 17 | 9 6 16 | syl2anc | |- ( ph -> ( N ` { Z } ) e. ( LSubSp ` W ) ) |
| 18 | 12 17 | sseldd | |- ( ph -> ( N ` { Z } ) e. ( SubGrp ` W ) ) |
| 19 | eqid | |- ( LSSum ` W ) = ( LSSum ` W ) |
|
| 20 | 19 | lsmub1 | |- ( ( ( N ` { Y } ) e. ( SubGrp ` W ) /\ ( N ` { Z } ) e. ( SubGrp ` W ) ) -> ( N ` { Y } ) C_ ( ( N ` { Y } ) ( LSSum ` W ) ( N ` { Z } ) ) ) |
| 21 | 15 18 20 | syl2anc | |- ( ph -> ( N ` { Y } ) C_ ( ( N ` { Y } ) ( LSSum ` W ) ( N ` { Z } ) ) ) |
| 22 | 1 2 19 9 5 6 | lsmpr | |- ( ph -> ( N ` { Y , Z } ) = ( ( N ` { Y } ) ( LSSum ` W ) ( N ` { Z } ) ) ) |
| 23 | 21 22 | sseqtrrd | |- ( ph -> ( N ` { Y } ) C_ ( N ` { Y , Z } ) ) |
| 24 | sseq1 | |- ( ( N ` { X } ) = ( N ` { Y } ) -> ( ( N ` { X } ) C_ ( N ` { Y , Z } ) <-> ( N ` { Y } ) C_ ( N ` { Y , Z } ) ) ) |
|
| 25 | 23 24 | syl5ibrcom | |- ( ph -> ( ( N ` { X } ) = ( N ` { Y } ) -> ( N ` { X } ) C_ ( N ` { Y , Z } ) ) ) |
| 26 | 1 10 2 9 5 6 | lspprcl | |- ( ph -> ( N ` { Y , Z } ) e. ( LSubSp ` W ) ) |
| 27 | 1 10 2 9 26 4 | ellspsn5b | |- ( ph -> ( X e. ( N ` { Y , Z } ) <-> ( N ` { X } ) C_ ( N ` { Y , Z } ) ) ) |
| 28 | 25 27 | sylibrd | |- ( ph -> ( ( N ` { X } ) = ( N ` { Y } ) -> X e. ( N ` { Y , Z } ) ) ) |
| 29 | 28 | necon3bd | |- ( ph -> ( -. X e. ( N ` { Y , Z } ) -> ( N ` { X } ) =/= ( N ` { Y } ) ) ) |
| 30 | 7 29 | mpd | |- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
| 31 | 19 | lsmub2 | |- ( ( ( N ` { Y } ) e. ( SubGrp ` W ) /\ ( N ` { Z } ) e. ( SubGrp ` W ) ) -> ( N ` { Z } ) C_ ( ( N ` { Y } ) ( LSSum ` W ) ( N ` { Z } ) ) ) |
| 32 | 15 18 31 | syl2anc | |- ( ph -> ( N ` { Z } ) C_ ( ( N ` { Y } ) ( LSSum ` W ) ( N ` { Z } ) ) ) |
| 33 | 32 22 | sseqtrrd | |- ( ph -> ( N ` { Z } ) C_ ( N ` { Y , Z } ) ) |
| 34 | sseq1 | |- ( ( N ` { X } ) = ( N ` { Z } ) -> ( ( N ` { X } ) C_ ( N ` { Y , Z } ) <-> ( N ` { Z } ) C_ ( N ` { Y , Z } ) ) ) |
|
| 35 | 33 34 | syl5ibrcom | |- ( ph -> ( ( N ` { X } ) = ( N ` { Z } ) -> ( N ` { X } ) C_ ( N ` { Y , Z } ) ) ) |
| 36 | 35 27 | sylibrd | |- ( ph -> ( ( N ` { X } ) = ( N ` { Z } ) -> X e. ( N ` { Y , Z } ) ) ) |
| 37 | 36 | necon3bd | |- ( ph -> ( -. X e. ( N ` { Y , Z } ) -> ( N ` { X } ) =/= ( N ` { Z } ) ) ) |
| 38 | 7 37 | mpd | |- ( ph -> ( N ` { X } ) =/= ( N ` { Z } ) ) |
| 39 | 30 38 | jca | |- ( ph -> ( ( N ` { X } ) =/= ( N ` { Y } ) /\ ( N ` { X } ) =/= ( N ` { Z } ) ) ) |