This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate way to say 3 vectors are mutually independent (swap 1st and 2nd). (Contributed by NM, 11-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspindp1.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspindp1.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| lspindp1.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lspindp1.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | ||
| lspindp1.y | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) | ||
| lspindp1.z | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| lspindp1.x | ⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) | ||
| lspindp1.q | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) | ||
| lspindp1.e | ⊢ ( 𝜑 → ¬ 𝑍 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) | ||
| Assertion | lspindp1 | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑍 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ∧ ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑍 , 𝑌 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspindp1.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspindp1.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 3 | lspindp1.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 4 | lspindp1.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | |
| 5 | lspindp1.y | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) | |
| 6 | lspindp1.z | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 7 | lspindp1.x | ⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) | |
| 8 | lspindp1.q | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) | |
| 9 | lspindp1.e | ⊢ ( 𝜑 → ¬ 𝑍 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) | |
| 10 | 5 | eldifad | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 11 | 1 3 4 7 10 6 9 | lspindpi | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑍 } ) ≠ ( 𝑁 ‘ { 𝑋 } ) ∧ ( 𝑁 ‘ { 𝑍 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 12 | 11 | simprd | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑍 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
| 13 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑍 , 𝑌 } ) ) → 𝑊 ∈ LVec ) |
| 14 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑍 , 𝑌 } ) ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 15 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑍 , 𝑌 } ) ) → 𝑍 ∈ 𝑉 ) |
| 16 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑍 , 𝑌 } ) ) → 𝑌 ∈ 𝑉 ) |
| 17 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑍 , 𝑌 } ) ) → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
| 18 | simpr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑍 , 𝑌 } ) ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑍 , 𝑌 } ) ) | |
| 19 | 1 2 3 13 14 15 16 17 18 | lspexch | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑍 , 𝑌 } ) ) → 𝑍 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
| 20 | 9 19 | mtand | ⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑍 , 𝑌 } ) ) |
| 21 | 12 20 | jca | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑍 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ∧ ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑍 , 𝑌 } ) ) ) |