This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset implies subgroup sum subset (extended domain version). (Contributed by NM, 25-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmless2.v | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| lsmless2.s | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | ||
| Assertion | lsmless2x | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ 𝑇 ⊆ 𝑈 ) → ( 𝑅 ⊕ 𝑇 ) ⊆ ( 𝑅 ⊕ 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmless2.v | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | lsmless2.s | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| 3 | ssrexv | ⊢ ( 𝑇 ⊆ 𝑈 → ( ∃ 𝑧 ∈ 𝑇 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) → ∃ 𝑧 ∈ 𝑈 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) | |
| 4 | 3 | reximdv | ⊢ ( 𝑇 ⊆ 𝑈 → ( ∃ 𝑦 ∈ 𝑅 ∃ 𝑧 ∈ 𝑇 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) → ∃ 𝑦 ∈ 𝑅 ∃ 𝑧 ∈ 𝑈 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 5 | 4 | adantl | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ 𝑇 ⊆ 𝑈 ) → ( ∃ 𝑦 ∈ 𝑅 ∃ 𝑧 ∈ 𝑇 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) → ∃ 𝑦 ∈ 𝑅 ∃ 𝑧 ∈ 𝑈 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 6 | simpl1 | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ 𝑇 ⊆ 𝑈 ) → 𝐺 ∈ 𝑉 ) | |
| 7 | simpl2 | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ 𝑇 ⊆ 𝑈 ) → 𝑅 ⊆ 𝐵 ) | |
| 8 | simpr | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ 𝑇 ⊆ 𝑈 ) → 𝑇 ⊆ 𝑈 ) | |
| 9 | simpl3 | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ 𝑇 ⊆ 𝑈 ) → 𝑈 ⊆ 𝐵 ) | |
| 10 | 8 9 | sstrd | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ 𝑇 ⊆ 𝑈 ) → 𝑇 ⊆ 𝐵 ) |
| 11 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 12 | 1 11 2 | lsmelvalx | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) → ( 𝑥 ∈ ( 𝑅 ⊕ 𝑇 ) ↔ ∃ 𝑦 ∈ 𝑅 ∃ 𝑧 ∈ 𝑇 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 13 | 6 7 10 12 | syl3anc | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ 𝑇 ⊆ 𝑈 ) → ( 𝑥 ∈ ( 𝑅 ⊕ 𝑇 ) ↔ ∃ 𝑦 ∈ 𝑅 ∃ 𝑧 ∈ 𝑇 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 14 | 1 11 2 | lsmelvalx | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → ( 𝑥 ∈ ( 𝑅 ⊕ 𝑈 ) ↔ ∃ 𝑦 ∈ 𝑅 ∃ 𝑧 ∈ 𝑈 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 15 | 14 | adantr | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ 𝑇 ⊆ 𝑈 ) → ( 𝑥 ∈ ( 𝑅 ⊕ 𝑈 ) ↔ ∃ 𝑦 ∈ 𝑅 ∃ 𝑧 ∈ 𝑈 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 16 | 5 13 15 | 3imtr4d | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ 𝑇 ⊆ 𝑈 ) → ( 𝑥 ∈ ( 𝑅 ⊕ 𝑇 ) → 𝑥 ∈ ( 𝑅 ⊕ 𝑈 ) ) ) |
| 17 | 16 | ssrdv | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ 𝑇 ⊆ 𝑈 ) → ( 𝑅 ⊕ 𝑇 ) ⊆ ( 𝑅 ⊕ 𝑈 ) ) |