This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two structures have the same components (properties), they have the same subspace structure. (Contributed by Mario Carneiro, 29-Jun-2015) (Revised by AV, 25-Apr-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmpropd.b1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| lsmpropd.b2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | ||
| lsmpropd.p | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | ||
| lsmpropd.v1 | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | ||
| lsmpropd.v2 | ⊢ ( 𝜑 → 𝐿 ∈ 𝑊 ) | ||
| Assertion | lsmpropd | ⊢ ( 𝜑 → ( LSSum ‘ 𝐾 ) = ( LSSum ‘ 𝐿 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmpropd.b1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| 2 | lsmpropd.b2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | |
| 3 | lsmpropd.p | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | |
| 4 | lsmpropd.v1 | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | |
| 5 | lsmpropd.v2 | ⊢ ( 𝜑 → 𝐿 ∈ 𝑊 ) | |
| 6 | simp11 | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑢 ) → 𝜑 ) | |
| 7 | simp12 | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑢 ) → 𝑡 ∈ 𝒫 𝐵 ) | |
| 8 | 7 | elpwid | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑢 ) → 𝑡 ⊆ 𝐵 ) |
| 9 | simp2 | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑢 ) → 𝑥 ∈ 𝑡 ) | |
| 10 | 8 9 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑢 ) → 𝑥 ∈ 𝐵 ) |
| 11 | simp13 | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑢 ) → 𝑢 ∈ 𝒫 𝐵 ) | |
| 12 | 11 | elpwid | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑢 ) → 𝑢 ⊆ 𝐵 ) |
| 13 | simp3 | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑢 ) → 𝑦 ∈ 𝑢 ) | |
| 14 | 12 13 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑢 ) → 𝑦 ∈ 𝐵 ) |
| 15 | 6 10 14 3 | syl12anc | ⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵 ) ∧ 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑢 ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) |
| 16 | 15 | mpoeq3dva | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵 ) → ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) = ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ) |
| 17 | 16 | rneqd | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵 ) → ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) = ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ) |
| 18 | 17 | mpoeq3dva | ⊢ ( 𝜑 → ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) ) = ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ) ) |
| 19 | 1 | pweqd | ⊢ ( 𝜑 → 𝒫 𝐵 = 𝒫 ( Base ‘ 𝐾 ) ) |
| 20 | mpoeq12 | ⊢ ( ( 𝒫 𝐵 = 𝒫 ( Base ‘ 𝐾 ) ∧ 𝒫 𝐵 = 𝒫 ( Base ‘ 𝐾 ) ) → ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐾 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐾 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) ) ) | |
| 21 | 19 19 20 | syl2anc | ⊢ ( 𝜑 → ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐾 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐾 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) ) ) |
| 22 | 2 | pweqd | ⊢ ( 𝜑 → 𝒫 𝐵 = 𝒫 ( Base ‘ 𝐿 ) ) |
| 23 | mpoeq12 | ⊢ ( ( 𝒫 𝐵 = 𝒫 ( Base ‘ 𝐿 ) ∧ 𝒫 𝐵 = 𝒫 ( Base ‘ 𝐿 ) ) → ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐿 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐿 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ) ) | |
| 24 | 22 22 23 | syl2anc | ⊢ ( 𝜑 → ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐿 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐿 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ) ) |
| 25 | 18 21 24 | 3eqtr3d | ⊢ ( 𝜑 → ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐾 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐾 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐿 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐿 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ) ) |
| 26 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 27 | eqid | ⊢ ( +g ‘ 𝐾 ) = ( +g ‘ 𝐾 ) | |
| 28 | eqid | ⊢ ( LSSum ‘ 𝐾 ) = ( LSSum ‘ 𝐾 ) | |
| 29 | 26 27 28 | lsmfval | ⊢ ( 𝐾 ∈ 𝑉 → ( LSSum ‘ 𝐾 ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐾 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐾 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) ) ) |
| 30 | 4 29 | syl | ⊢ ( 𝜑 → ( LSSum ‘ 𝐾 ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐾 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐾 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) ) ) ) |
| 31 | eqid | ⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) | |
| 32 | eqid | ⊢ ( +g ‘ 𝐿 ) = ( +g ‘ 𝐿 ) | |
| 33 | eqid | ⊢ ( LSSum ‘ 𝐿 ) = ( LSSum ‘ 𝐿 ) | |
| 34 | 31 32 33 | lsmfval | ⊢ ( 𝐿 ∈ 𝑊 → ( LSSum ‘ 𝐿 ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐿 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐿 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ) ) |
| 35 | 5 34 | syl | ⊢ ( 𝜑 → ( LSSum ‘ 𝐿 ) = ( 𝑡 ∈ 𝒫 ( Base ‘ 𝐿 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝐿 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) ) ) |
| 36 | 25 30 35 | 3eqtr4d | ⊢ ( 𝜑 → ( LSSum ‘ 𝐾 ) = ( LSSum ‘ 𝐿 ) ) |