This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two structures have the same components (properties), they have the same subspace structure. (Contributed by Mario Carneiro, 29-Jun-2015) (Revised by AV, 25-Apr-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmpropd.b1 | |- ( ph -> B = ( Base ` K ) ) |
|
| lsmpropd.b2 | |- ( ph -> B = ( Base ` L ) ) |
||
| lsmpropd.p | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
||
| lsmpropd.v1 | |- ( ph -> K e. V ) |
||
| lsmpropd.v2 | |- ( ph -> L e. W ) |
||
| Assertion | lsmpropd | |- ( ph -> ( LSSum ` K ) = ( LSSum ` L ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmpropd.b1 | |- ( ph -> B = ( Base ` K ) ) |
|
| 2 | lsmpropd.b2 | |- ( ph -> B = ( Base ` L ) ) |
|
| 3 | lsmpropd.p | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
|
| 4 | lsmpropd.v1 | |- ( ph -> K e. V ) |
|
| 5 | lsmpropd.v2 | |- ( ph -> L e. W ) |
|
| 6 | simp11 | |- ( ( ( ph /\ t e. ~P B /\ u e. ~P B ) /\ x e. t /\ y e. u ) -> ph ) |
|
| 7 | simp12 | |- ( ( ( ph /\ t e. ~P B /\ u e. ~P B ) /\ x e. t /\ y e. u ) -> t e. ~P B ) |
|
| 8 | 7 | elpwid | |- ( ( ( ph /\ t e. ~P B /\ u e. ~P B ) /\ x e. t /\ y e. u ) -> t C_ B ) |
| 9 | simp2 | |- ( ( ( ph /\ t e. ~P B /\ u e. ~P B ) /\ x e. t /\ y e. u ) -> x e. t ) |
|
| 10 | 8 9 | sseldd | |- ( ( ( ph /\ t e. ~P B /\ u e. ~P B ) /\ x e. t /\ y e. u ) -> x e. B ) |
| 11 | simp13 | |- ( ( ( ph /\ t e. ~P B /\ u e. ~P B ) /\ x e. t /\ y e. u ) -> u e. ~P B ) |
|
| 12 | 11 | elpwid | |- ( ( ( ph /\ t e. ~P B /\ u e. ~P B ) /\ x e. t /\ y e. u ) -> u C_ B ) |
| 13 | simp3 | |- ( ( ( ph /\ t e. ~P B /\ u e. ~P B ) /\ x e. t /\ y e. u ) -> y e. u ) |
|
| 14 | 12 13 | sseldd | |- ( ( ( ph /\ t e. ~P B /\ u e. ~P B ) /\ x e. t /\ y e. u ) -> y e. B ) |
| 15 | 6 10 14 3 | syl12anc | |- ( ( ( ph /\ t e. ~P B /\ u e. ~P B ) /\ x e. t /\ y e. u ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
| 16 | 15 | mpoeq3dva | |- ( ( ph /\ t e. ~P B /\ u e. ~P B ) -> ( x e. t , y e. u |-> ( x ( +g ` K ) y ) ) = ( x e. t , y e. u |-> ( x ( +g ` L ) y ) ) ) |
| 17 | 16 | rneqd | |- ( ( ph /\ t e. ~P B /\ u e. ~P B ) -> ran ( x e. t , y e. u |-> ( x ( +g ` K ) y ) ) = ran ( x e. t , y e. u |-> ( x ( +g ` L ) y ) ) ) |
| 18 | 17 | mpoeq3dva | |- ( ph -> ( t e. ~P B , u e. ~P B |-> ran ( x e. t , y e. u |-> ( x ( +g ` K ) y ) ) ) = ( t e. ~P B , u e. ~P B |-> ran ( x e. t , y e. u |-> ( x ( +g ` L ) y ) ) ) ) |
| 19 | 1 | pweqd | |- ( ph -> ~P B = ~P ( Base ` K ) ) |
| 20 | mpoeq12 | |- ( ( ~P B = ~P ( Base ` K ) /\ ~P B = ~P ( Base ` K ) ) -> ( t e. ~P B , u e. ~P B |-> ran ( x e. t , y e. u |-> ( x ( +g ` K ) y ) ) ) = ( t e. ~P ( Base ` K ) , u e. ~P ( Base ` K ) |-> ran ( x e. t , y e. u |-> ( x ( +g ` K ) y ) ) ) ) |
|
| 21 | 19 19 20 | syl2anc | |- ( ph -> ( t e. ~P B , u e. ~P B |-> ran ( x e. t , y e. u |-> ( x ( +g ` K ) y ) ) ) = ( t e. ~P ( Base ` K ) , u e. ~P ( Base ` K ) |-> ran ( x e. t , y e. u |-> ( x ( +g ` K ) y ) ) ) ) |
| 22 | 2 | pweqd | |- ( ph -> ~P B = ~P ( Base ` L ) ) |
| 23 | mpoeq12 | |- ( ( ~P B = ~P ( Base ` L ) /\ ~P B = ~P ( Base ` L ) ) -> ( t e. ~P B , u e. ~P B |-> ran ( x e. t , y e. u |-> ( x ( +g ` L ) y ) ) ) = ( t e. ~P ( Base ` L ) , u e. ~P ( Base ` L ) |-> ran ( x e. t , y e. u |-> ( x ( +g ` L ) y ) ) ) ) |
|
| 24 | 22 22 23 | syl2anc | |- ( ph -> ( t e. ~P B , u e. ~P B |-> ran ( x e. t , y e. u |-> ( x ( +g ` L ) y ) ) ) = ( t e. ~P ( Base ` L ) , u e. ~P ( Base ` L ) |-> ran ( x e. t , y e. u |-> ( x ( +g ` L ) y ) ) ) ) |
| 25 | 18 21 24 | 3eqtr3d | |- ( ph -> ( t e. ~P ( Base ` K ) , u e. ~P ( Base ` K ) |-> ran ( x e. t , y e. u |-> ( x ( +g ` K ) y ) ) ) = ( t e. ~P ( Base ` L ) , u e. ~P ( Base ` L ) |-> ran ( x e. t , y e. u |-> ( x ( +g ` L ) y ) ) ) ) |
| 26 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 27 | eqid | |- ( +g ` K ) = ( +g ` K ) |
|
| 28 | eqid | |- ( LSSum ` K ) = ( LSSum ` K ) |
|
| 29 | 26 27 28 | lsmfval | |- ( K e. V -> ( LSSum ` K ) = ( t e. ~P ( Base ` K ) , u e. ~P ( Base ` K ) |-> ran ( x e. t , y e. u |-> ( x ( +g ` K ) y ) ) ) ) |
| 30 | 4 29 | syl | |- ( ph -> ( LSSum ` K ) = ( t e. ~P ( Base ` K ) , u e. ~P ( Base ` K ) |-> ran ( x e. t , y e. u |-> ( x ( +g ` K ) y ) ) ) ) |
| 31 | eqid | |- ( Base ` L ) = ( Base ` L ) |
|
| 32 | eqid | |- ( +g ` L ) = ( +g ` L ) |
|
| 33 | eqid | |- ( LSSum ` L ) = ( LSSum ` L ) |
|
| 34 | 31 32 33 | lsmfval | |- ( L e. W -> ( LSSum ` L ) = ( t e. ~P ( Base ` L ) , u e. ~P ( Base ` L ) |-> ran ( x e. t , y e. u |-> ( x ( +g ` L ) y ) ) ) ) |
| 35 | 5 34 | syl | |- ( ph -> ( LSSum ` L ) = ( t e. ~P ( Base ` L ) , u e. ~P ( Base ` L ) |-> ran ( x e. t , y e. u |-> ( x ( +g ` L ) y ) ) ) ) |
| 36 | 25 30 35 | 3eqtr4d | |- ( ph -> ( LSSum ` K ) = ( LSSum ` L ) ) |