This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The "subgroups commute" predicate applied to a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmcntz.p | |- .(+) = ( LSSum ` G ) |
|
| lsmcntz.s | |- ( ph -> S e. ( SubGrp ` G ) ) |
||
| lsmcntz.t | |- ( ph -> T e. ( SubGrp ` G ) ) |
||
| lsmcntz.u | |- ( ph -> U e. ( SubGrp ` G ) ) |
||
| lsmcntz.z | |- Z = ( Cntz ` G ) |
||
| Assertion | lsmcntz | |- ( ph -> ( ( S .(+) T ) C_ ( Z ` U ) <-> ( S C_ ( Z ` U ) /\ T C_ ( Z ` U ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmcntz.p | |- .(+) = ( LSSum ` G ) |
|
| 2 | lsmcntz.s | |- ( ph -> S e. ( SubGrp ` G ) ) |
|
| 3 | lsmcntz.t | |- ( ph -> T e. ( SubGrp ` G ) ) |
|
| 4 | lsmcntz.u | |- ( ph -> U e. ( SubGrp ` G ) ) |
|
| 5 | lsmcntz.z | |- Z = ( Cntz ` G ) |
|
| 6 | subgrcl | |- ( U e. ( SubGrp ` G ) -> G e. Grp ) |
|
| 7 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 8 | 7 | subgss | |- ( U e. ( SubGrp ` G ) -> U C_ ( Base ` G ) ) |
| 9 | 7 5 | cntzsubg | |- ( ( G e. Grp /\ U C_ ( Base ` G ) ) -> ( Z ` U ) e. ( SubGrp ` G ) ) |
| 10 | 6 8 9 | syl2anc | |- ( U e. ( SubGrp ` G ) -> ( Z ` U ) e. ( SubGrp ` G ) ) |
| 11 | 4 10 | syl | |- ( ph -> ( Z ` U ) e. ( SubGrp ` G ) ) |
| 12 | 1 | lsmlub | |- ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ ( Z ` U ) e. ( SubGrp ` G ) ) -> ( ( S C_ ( Z ` U ) /\ T C_ ( Z ` U ) ) <-> ( S .(+) T ) C_ ( Z ` U ) ) ) |
| 13 | 2 3 11 12 | syl3anc | |- ( ph -> ( ( S C_ ( Z ` U ) /\ T C_ ( Z ` U ) ) <-> ( S .(+) T ) C_ ( Z ` U ) ) ) |
| 14 | 13 | bicomd | |- ( ph -> ( ( S .(+) T ) C_ ( Z ` U ) <-> ( S C_ ( Z ` U ) /\ T C_ ( Z ` U ) ) ) ) |