This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The endpoints of a loop (which is an edge at index J ) are two (identical) vertices A . (Contributed by AV, 1-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lpvtx.i | |- I = ( iEdg ` G ) |
|
| Assertion | lpvtx | |- ( ( G e. UHGraph /\ J e. dom I /\ ( I ` J ) = { A } ) -> A e. ( Vtx ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpvtx.i | |- I = ( iEdg ` G ) |
|
| 2 | simp1 | |- ( ( G e. UHGraph /\ J e. dom I /\ ( I ` J ) = { A } ) -> G e. UHGraph ) |
|
| 3 | 1 | uhgrfun | |- ( G e. UHGraph -> Fun I ) |
| 4 | 3 | funfnd | |- ( G e. UHGraph -> I Fn dom I ) |
| 5 | 4 | 3ad2ant1 | |- ( ( G e. UHGraph /\ J e. dom I /\ ( I ` J ) = { A } ) -> I Fn dom I ) |
| 6 | simp2 | |- ( ( G e. UHGraph /\ J e. dom I /\ ( I ` J ) = { A } ) -> J e. dom I ) |
|
| 7 | 1 | uhgrn0 | |- ( ( G e. UHGraph /\ I Fn dom I /\ J e. dom I ) -> ( I ` J ) =/= (/) ) |
| 8 | 2 5 6 7 | syl3anc | |- ( ( G e. UHGraph /\ J e. dom I /\ ( I ` J ) = { A } ) -> ( I ` J ) =/= (/) ) |
| 9 | neeq1 | |- ( ( I ` J ) = { A } -> ( ( I ` J ) =/= (/) <-> { A } =/= (/) ) ) |
|
| 10 | 9 | biimpd | |- ( ( I ` J ) = { A } -> ( ( I ` J ) =/= (/) -> { A } =/= (/) ) ) |
| 11 | 10 | 3ad2ant3 | |- ( ( G e. UHGraph /\ J e. dom I /\ ( I ` J ) = { A } ) -> ( ( I ` J ) =/= (/) -> { A } =/= (/) ) ) |
| 12 | 8 11 | mpd | |- ( ( G e. UHGraph /\ J e. dom I /\ ( I ` J ) = { A } ) -> { A } =/= (/) ) |
| 13 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 14 | 13 1 | uhgrss | |- ( ( G e. UHGraph /\ J e. dom I ) -> ( I ` J ) C_ ( Vtx ` G ) ) |
| 15 | 14 | 3adant3 | |- ( ( G e. UHGraph /\ J e. dom I /\ ( I ` J ) = { A } ) -> ( I ` J ) C_ ( Vtx ` G ) ) |
| 16 | sseq1 | |- ( ( I ` J ) = { A } -> ( ( I ` J ) C_ ( Vtx ` G ) <-> { A } C_ ( Vtx ` G ) ) ) |
|
| 17 | 16 | 3ad2ant3 | |- ( ( G e. UHGraph /\ J e. dom I /\ ( I ` J ) = { A } ) -> ( ( I ` J ) C_ ( Vtx ` G ) <-> { A } C_ ( Vtx ` G ) ) ) |
| 18 | 15 17 | mpbid | |- ( ( G e. UHGraph /\ J e. dom I /\ ( I ` J ) = { A } ) -> { A } C_ ( Vtx ` G ) ) |
| 19 | snnzb | |- ( A e. _V <-> { A } =/= (/) ) |
|
| 20 | snssg | |- ( A e. _V -> ( A e. ( Vtx ` G ) <-> { A } C_ ( Vtx ` G ) ) ) |
|
| 21 | 19 20 | sylbir | |- ( { A } =/= (/) -> ( A e. ( Vtx ` G ) <-> { A } C_ ( Vtx ` G ) ) ) |
| 22 | 18 21 | syl5ibrcom | |- ( ( G e. UHGraph /\ J e. dom I /\ ( I ` J ) = { A } ) -> ( { A } =/= (/) -> A e. ( Vtx ` G ) ) ) |
| 23 | 12 22 | mpd | |- ( ( G e. UHGraph /\ J e. dom I /\ ( I ` J ) = { A } ) -> A e. ( Vtx ` G ) ) |