This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The lower bound of an open interval is a limit point of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lptioo1.1 | ⊢ 𝐽 = ( topGen ‘ ran (,) ) | |
| lptioo1.2 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | ||
| lptioo1.3 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) | ||
| lptioo1.4 | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | ||
| Assertion | lptioo1 | ⊢ ( 𝜑 → 𝐴 ∈ ( ( limPt ‘ 𝐽 ) ‘ ( 𝐴 (,) 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lptioo1.1 | ⊢ 𝐽 = ( topGen ‘ ran (,) ) | |
| 2 | lptioo1.2 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 3 | lptioo1.3 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) | |
| 4 | lptioo1.4 | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | |
| 5 | difssd | ⊢ ( 𝜑 → ( ( 𝐴 (,) 𝐵 ) ∖ { 𝐴 } ) ⊆ ( 𝐴 (,) 𝐵 ) ) | |
| 6 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) | |
| 7 | lbioo | ⊢ ¬ 𝐴 ∈ ( 𝐴 (,) 𝐵 ) | |
| 8 | eleq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↔ 𝐴 ∈ ( 𝐴 (,) 𝐵 ) ) ) | |
| 9 | 8 | biimpcd | ⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝑥 = 𝐴 → 𝐴 ∈ ( 𝐴 (,) 𝐵 ) ) ) |
| 10 | 7 9 | mtoi | ⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → ¬ 𝑥 = 𝐴 ) |
| 11 | 10 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ¬ 𝑥 = 𝐴 ) |
| 12 | velsn | ⊢ ( 𝑥 ∈ { 𝐴 } ↔ 𝑥 = 𝐴 ) | |
| 13 | 11 12 | sylnibr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ¬ 𝑥 ∈ { 𝐴 } ) |
| 14 | 6 13 | eldifd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ∈ ( ( 𝐴 (,) 𝐵 ) ∖ { 𝐴 } ) ) |
| 15 | 5 14 | eqelssd | ⊢ ( 𝜑 → ( ( 𝐴 (,) 𝐵 ) ∖ { 𝐴 } ) = ( 𝐴 (,) 𝐵 ) ) |
| 16 | 15 | ineq2d | ⊢ ( 𝜑 → ( ( 𝑎 (,) 𝑏 ) ∩ ( ( 𝐴 (,) 𝐵 ) ∖ { 𝐴 } ) ) = ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 (,) 𝐵 ) ) ) |
| 17 | 16 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ) ∧ 𝐴 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( 𝑎 (,) 𝑏 ) ∩ ( ( 𝐴 (,) 𝐵 ) ∖ { 𝐴 } ) ) = ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 (,) 𝐵 ) ) ) |
| 18 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ) ∧ 𝐴 ∈ ( 𝑎 (,) 𝑏 ) ) → 𝑎 ∈ ℝ* ) | |
| 19 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ) ∧ 𝐴 ∈ ( 𝑎 (,) 𝑏 ) ) → 𝑏 ∈ ℝ* ) | |
| 20 | 2 | rexrd | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 21 | 20 3 | jca | ⊢ ( 𝜑 → ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ) |
| 22 | 21 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ) ∧ 𝐴 ∈ ( 𝑎 (,) 𝑏 ) ) → ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ) |
| 23 | iooin | ⊢ ( ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ∧ ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ) → ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 (,) 𝐵 ) ) = ( if ( 𝑎 ≤ 𝐴 , 𝐴 , 𝑎 ) (,) if ( 𝑏 ≤ 𝐵 , 𝑏 , 𝐵 ) ) ) | |
| 24 | 18 19 22 23 | syl21anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ) ∧ 𝐴 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 (,) 𝐵 ) ) = ( if ( 𝑎 ≤ 𝐴 , 𝐴 , 𝑎 ) (,) if ( 𝑏 ≤ 𝐵 , 𝑏 , 𝐵 ) ) ) |
| 25 | elioo3g | ⊢ ( 𝐴 ∈ ( 𝑎 (,) 𝑏 ) ↔ ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) ∧ ( 𝑎 < 𝐴 ∧ 𝐴 < 𝑏 ) ) ) | |
| 26 | 25 | biimpi | ⊢ ( 𝐴 ∈ ( 𝑎 (,) 𝑏 ) → ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) ∧ ( 𝑎 < 𝐴 ∧ 𝐴 < 𝑏 ) ) ) |
| 27 | 26 | simpld | ⊢ ( 𝐴 ∈ ( 𝑎 (,) 𝑏 ) → ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) ) |
| 28 | 27 | simp1d | ⊢ ( 𝐴 ∈ ( 𝑎 (,) 𝑏 ) → 𝑎 ∈ ℝ* ) |
| 29 | 27 | simp3d | ⊢ ( 𝐴 ∈ ( 𝑎 (,) 𝑏 ) → 𝐴 ∈ ℝ* ) |
| 30 | 26 | simprd | ⊢ ( 𝐴 ∈ ( 𝑎 (,) 𝑏 ) → ( 𝑎 < 𝐴 ∧ 𝐴 < 𝑏 ) ) |
| 31 | 30 | simpld | ⊢ ( 𝐴 ∈ ( 𝑎 (,) 𝑏 ) → 𝑎 < 𝐴 ) |
| 32 | 28 29 31 | xrltled | ⊢ ( 𝐴 ∈ ( 𝑎 (,) 𝑏 ) → 𝑎 ≤ 𝐴 ) |
| 33 | 32 | iftrued | ⊢ ( 𝐴 ∈ ( 𝑎 (,) 𝑏 ) → if ( 𝑎 ≤ 𝐴 , 𝐴 , 𝑎 ) = 𝐴 ) |
| 34 | 33 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ) ∧ 𝐴 ∈ ( 𝑎 (,) 𝑏 ) ) → if ( 𝑎 ≤ 𝐴 , 𝐴 , 𝑎 ) = 𝐴 ) |
| 35 | 30 | simprd | ⊢ ( 𝐴 ∈ ( 𝑎 (,) 𝑏 ) → 𝐴 < 𝑏 ) |
| 36 | 35 | ad2antlr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ) ∧ 𝐴 ∈ ( 𝑎 (,) 𝑏 ) ) ∧ 𝑏 ≤ 𝐵 ) → 𝐴 < 𝑏 ) |
| 37 | iftrue | ⊢ ( 𝑏 ≤ 𝐵 → if ( 𝑏 ≤ 𝐵 , 𝑏 , 𝐵 ) = 𝑏 ) | |
| 38 | 37 | eqcomd | ⊢ ( 𝑏 ≤ 𝐵 → 𝑏 = if ( 𝑏 ≤ 𝐵 , 𝑏 , 𝐵 ) ) |
| 39 | 38 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ) ∧ 𝐴 ∈ ( 𝑎 (,) 𝑏 ) ) ∧ 𝑏 ≤ 𝐵 ) → 𝑏 = if ( 𝑏 ≤ 𝐵 , 𝑏 , 𝐵 ) ) |
| 40 | 36 39 | breqtrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ) ∧ 𝐴 ∈ ( 𝑎 (,) 𝑏 ) ) ∧ 𝑏 ≤ 𝐵 ) → 𝐴 < if ( 𝑏 ≤ 𝐵 , 𝑏 , 𝐵 ) ) |
| 41 | 4 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ) ∧ 𝐴 ∈ ( 𝑎 (,) 𝑏 ) ) ∧ ¬ 𝑏 ≤ 𝐵 ) → 𝐴 < 𝐵 ) |
| 42 | iffalse | ⊢ ( ¬ 𝑏 ≤ 𝐵 → if ( 𝑏 ≤ 𝐵 , 𝑏 , 𝐵 ) = 𝐵 ) | |
| 43 | 42 | eqcomd | ⊢ ( ¬ 𝑏 ≤ 𝐵 → 𝐵 = if ( 𝑏 ≤ 𝐵 , 𝑏 , 𝐵 ) ) |
| 44 | 43 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ) ∧ 𝐴 ∈ ( 𝑎 (,) 𝑏 ) ) ∧ ¬ 𝑏 ≤ 𝐵 ) → 𝐵 = if ( 𝑏 ≤ 𝐵 , 𝑏 , 𝐵 ) ) |
| 45 | 41 44 | breqtrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ) ∧ 𝐴 ∈ ( 𝑎 (,) 𝑏 ) ) ∧ ¬ 𝑏 ≤ 𝐵 ) → 𝐴 < if ( 𝑏 ≤ 𝐵 , 𝑏 , 𝐵 ) ) |
| 46 | 40 45 | pm2.61dan | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ) ∧ 𝐴 ∈ ( 𝑎 (,) 𝑏 ) ) → 𝐴 < if ( 𝑏 ≤ 𝐵 , 𝑏 , 𝐵 ) ) |
| 47 | 34 46 | eqbrtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ) ∧ 𝐴 ∈ ( 𝑎 (,) 𝑏 ) ) → if ( 𝑎 ≤ 𝐴 , 𝐴 , 𝑎 ) < if ( 𝑏 ≤ 𝐵 , 𝑏 , 𝐵 ) ) |
| 48 | 20 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ) ∧ 𝐴 ∈ ( 𝑎 (,) 𝑏 ) ) ∧ 𝑎 ≤ 𝐴 ) → 𝐴 ∈ ℝ* ) |
| 49 | 18 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ) ∧ 𝐴 ∈ ( 𝑎 (,) 𝑏 ) ) ∧ ¬ 𝑎 ≤ 𝐴 ) → 𝑎 ∈ ℝ* ) |
| 50 | 48 49 | ifclda | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ) ∧ 𝐴 ∈ ( 𝑎 (,) 𝑏 ) ) → if ( 𝑎 ≤ 𝐴 , 𝐴 , 𝑎 ) ∈ ℝ* ) |
| 51 | 19 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ) ∧ 𝐴 ∈ ( 𝑎 (,) 𝑏 ) ) ∧ 𝑏 ≤ 𝐵 ) → 𝑏 ∈ ℝ* ) |
| 52 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ) ∧ 𝐴 ∈ ( 𝑎 (,) 𝑏 ) ) ∧ ¬ 𝑏 ≤ 𝐵 ) → 𝐵 ∈ ℝ* ) |
| 53 | 51 52 | ifclda | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ) ∧ 𝐴 ∈ ( 𝑎 (,) 𝑏 ) ) → if ( 𝑏 ≤ 𝐵 , 𝑏 , 𝐵 ) ∈ ℝ* ) |
| 54 | ioon0 | ⊢ ( ( if ( 𝑎 ≤ 𝐴 , 𝐴 , 𝑎 ) ∈ ℝ* ∧ if ( 𝑏 ≤ 𝐵 , 𝑏 , 𝐵 ) ∈ ℝ* ) → ( ( if ( 𝑎 ≤ 𝐴 , 𝐴 , 𝑎 ) (,) if ( 𝑏 ≤ 𝐵 , 𝑏 , 𝐵 ) ) ≠ ∅ ↔ if ( 𝑎 ≤ 𝐴 , 𝐴 , 𝑎 ) < if ( 𝑏 ≤ 𝐵 , 𝑏 , 𝐵 ) ) ) | |
| 55 | 50 53 54 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ) ∧ 𝐴 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( if ( 𝑎 ≤ 𝐴 , 𝐴 , 𝑎 ) (,) if ( 𝑏 ≤ 𝐵 , 𝑏 , 𝐵 ) ) ≠ ∅ ↔ if ( 𝑎 ≤ 𝐴 , 𝐴 , 𝑎 ) < if ( 𝑏 ≤ 𝐵 , 𝑏 , 𝐵 ) ) ) |
| 56 | 47 55 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ) ∧ 𝐴 ∈ ( 𝑎 (,) 𝑏 ) ) → ( if ( 𝑎 ≤ 𝐴 , 𝐴 , 𝑎 ) (,) if ( 𝑏 ≤ 𝐵 , 𝑏 , 𝐵 ) ) ≠ ∅ ) |
| 57 | 24 56 | eqnetrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ) ∧ 𝐴 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( 𝑎 (,) 𝑏 ) ∩ ( 𝐴 (,) 𝐵 ) ) ≠ ∅ ) |
| 58 | 17 57 | eqnetrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ) ∧ 𝐴 ∈ ( 𝑎 (,) 𝑏 ) ) → ( ( 𝑎 (,) 𝑏 ) ∩ ( ( 𝐴 (,) 𝐵 ) ∖ { 𝐴 } ) ) ≠ ∅ ) |
| 59 | 58 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ) → ( 𝐴 ∈ ( 𝑎 (,) 𝑏 ) → ( ( 𝑎 (,) 𝑏 ) ∩ ( ( 𝐴 (,) 𝐵 ) ∖ { 𝐴 } ) ) ≠ ∅ ) ) |
| 60 | 59 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑎 ∈ ℝ* ∀ 𝑏 ∈ ℝ* ( 𝐴 ∈ ( 𝑎 (,) 𝑏 ) → ( ( 𝑎 (,) 𝑏 ) ∩ ( ( 𝐴 (,) 𝐵 ) ∖ { 𝐴 } ) ) ≠ ∅ ) ) |
| 61 | ioossre | ⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ | |
| 62 | 61 | a1i | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) |
| 63 | 1 62 2 | islptre | ⊢ ( 𝜑 → ( 𝐴 ∈ ( ( limPt ‘ 𝐽 ) ‘ ( 𝐴 (,) 𝐵 ) ) ↔ ∀ 𝑎 ∈ ℝ* ∀ 𝑏 ∈ ℝ* ( 𝐴 ∈ ( 𝑎 (,) 𝑏 ) → ( ( 𝑎 (,) 𝑏 ) ∩ ( ( 𝐴 (,) 𝐵 ) ∖ { 𝐴 } ) ) ≠ ∅ ) ) ) |
| 64 | 60 63 | mpbird | ⊢ ( 𝜑 → 𝐴 ∈ ( ( limPt ‘ 𝐽 ) ‘ ( 𝐴 (,) 𝐵 ) ) ) |