This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Generalization of relogdiv to a complex left argument. (Contributed by Mario Carneiro, 8-Jul-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logdiv2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℝ+ ) → ( log ‘ ( 𝐴 / 𝐵 ) ) = ( ( log ‘ 𝐴 ) − ( log ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ℂ ) | |
| 2 | 1 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℝ+ ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 3 | relogcl | ⊢ ( 𝐵 ∈ ℝ+ → ( log ‘ 𝐵 ) ∈ ℝ ) | |
| 4 | 3 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℝ+ ) → ( log ‘ 𝐵 ) ∈ ℝ ) |
| 5 | 4 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℝ+ ) → ( log ‘ 𝐵 ) ∈ ℂ ) |
| 6 | efsub | ⊢ ( ( ( log ‘ 𝐴 ) ∈ ℂ ∧ ( log ‘ 𝐵 ) ∈ ℂ ) → ( exp ‘ ( ( log ‘ 𝐴 ) − ( log ‘ 𝐵 ) ) ) = ( ( exp ‘ ( log ‘ 𝐴 ) ) / ( exp ‘ ( log ‘ 𝐵 ) ) ) ) | |
| 7 | 2 5 6 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℝ+ ) → ( exp ‘ ( ( log ‘ 𝐴 ) − ( log ‘ 𝐵 ) ) ) = ( ( exp ‘ ( log ‘ 𝐴 ) ) / ( exp ‘ ( log ‘ 𝐵 ) ) ) ) |
| 8 | eflog | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) | |
| 9 | 8 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℝ+ ) → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) |
| 10 | reeflog | ⊢ ( 𝐵 ∈ ℝ+ → ( exp ‘ ( log ‘ 𝐵 ) ) = 𝐵 ) | |
| 11 | 10 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℝ+ ) → ( exp ‘ ( log ‘ 𝐵 ) ) = 𝐵 ) |
| 12 | 9 11 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℝ+ ) → ( ( exp ‘ ( log ‘ 𝐴 ) ) / ( exp ‘ ( log ‘ 𝐵 ) ) ) = ( 𝐴 / 𝐵 ) ) |
| 13 | 7 12 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℝ+ ) → ( exp ‘ ( ( log ‘ 𝐴 ) − ( log ‘ 𝐵 ) ) ) = ( 𝐴 / 𝐵 ) ) |
| 14 | 13 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℝ+ ) → ( log ‘ ( exp ‘ ( ( log ‘ 𝐴 ) − ( log ‘ 𝐵 ) ) ) ) = ( log ‘ ( 𝐴 / 𝐵 ) ) ) |
| 15 | 2 5 | negsubd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℝ+ ) → ( ( log ‘ 𝐴 ) + - ( log ‘ 𝐵 ) ) = ( ( log ‘ 𝐴 ) − ( log ‘ 𝐵 ) ) ) |
| 16 | logrncl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ran log ) | |
| 17 | 16 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℝ+ ) → ( log ‘ 𝐴 ) ∈ ran log ) |
| 18 | 4 | renegcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℝ+ ) → - ( log ‘ 𝐵 ) ∈ ℝ ) |
| 19 | logrnaddcl | ⊢ ( ( ( log ‘ 𝐴 ) ∈ ran log ∧ - ( log ‘ 𝐵 ) ∈ ℝ ) → ( ( log ‘ 𝐴 ) + - ( log ‘ 𝐵 ) ) ∈ ran log ) | |
| 20 | 17 18 19 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℝ+ ) → ( ( log ‘ 𝐴 ) + - ( log ‘ 𝐵 ) ) ∈ ran log ) |
| 21 | 15 20 | eqeltrrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℝ+ ) → ( ( log ‘ 𝐴 ) − ( log ‘ 𝐵 ) ) ∈ ran log ) |
| 22 | logef | ⊢ ( ( ( log ‘ 𝐴 ) − ( log ‘ 𝐵 ) ) ∈ ran log → ( log ‘ ( exp ‘ ( ( log ‘ 𝐴 ) − ( log ‘ 𝐵 ) ) ) ) = ( ( log ‘ 𝐴 ) − ( log ‘ 𝐵 ) ) ) | |
| 23 | 21 22 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℝ+ ) → ( log ‘ ( exp ‘ ( ( log ‘ 𝐴 ) − ( log ‘ 𝐵 ) ) ) ) = ( ( log ‘ 𝐴 ) − ( log ‘ 𝐵 ) ) ) |
| 24 | 14 23 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℝ+ ) → ( log ‘ ( 𝐴 / 𝐵 ) ) = ( ( log ‘ 𝐴 ) − ( log ‘ 𝐵 ) ) ) |