This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of vector subtraction on a normed complex vector space. (Contributed by Mario Carneiro, 19-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvmval.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| nvmval.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | ||
| nvmval.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | ||
| nvmval.3 | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | ||
| Assertion | nvmval2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑀 𝐵 ) = ( ( - 1 𝑆 𝐵 ) 𝐺 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvmval.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | nvmval.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| 3 | nvmval.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | |
| 4 | nvmval.3 | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | |
| 5 | 1 2 3 4 | nvmval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑀 𝐵 ) = ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) |
| 6 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 7 | 1 3 | nvscl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ - 1 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) → ( - 1 𝑆 𝐵 ) ∈ 𝑋 ) |
| 8 | 6 7 | mp3an2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ) → ( - 1 𝑆 𝐵 ) ∈ 𝑋 ) |
| 9 | 8 | 3adant2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( - 1 𝑆 𝐵 ) ∈ 𝑋 ) |
| 10 | 1 2 | nvcom | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ ( - 1 𝑆 𝐵 ) ∈ 𝑋 ) → ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) = ( ( - 1 𝑆 𝐵 ) 𝐺 𝐴 ) ) |
| 11 | 9 10 | syld3an3 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) = ( ( - 1 𝑆 𝐵 ) 𝐺 𝐴 ) ) |
| 12 | 5 11 | eqtrd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑀 𝐵 ) = ( ( - 1 𝑆 𝐵 ) 𝐺 𝐴 ) ) |