This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A linear operator is continuous iff it is bounded. (Contributed by NM, 14-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lnopcnbd | ⊢ ( 𝑇 ∈ LinOp → ( 𝑇 ∈ ContOp ↔ 𝑇 ∈ BndLinOp ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmcopex | ⊢ ( ( 𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp ) → ( normop ‘ 𝑇 ) ∈ ℝ ) | |
| 2 | 1 | ex | ⊢ ( 𝑇 ∈ LinOp → ( 𝑇 ∈ ContOp → ( normop ‘ 𝑇 ) ∈ ℝ ) ) |
| 3 | elbdop2 | ⊢ ( 𝑇 ∈ BndLinOp ↔ ( 𝑇 ∈ LinOp ∧ ( normop ‘ 𝑇 ) ∈ ℝ ) ) | |
| 4 | 3 | baibr | ⊢ ( 𝑇 ∈ LinOp → ( ( normop ‘ 𝑇 ) ∈ ℝ ↔ 𝑇 ∈ BndLinOp ) ) |
| 5 | 2 4 | sylibd | ⊢ ( 𝑇 ∈ LinOp → ( 𝑇 ∈ ContOp → 𝑇 ∈ BndLinOp ) ) |
| 6 | nmopre | ⊢ ( 𝑇 ∈ BndLinOp → ( normop ‘ 𝑇 ) ∈ ℝ ) | |
| 7 | nmbdoplb | ⊢ ( ( 𝑇 ∈ BndLinOp ∧ 𝑦 ∈ ℋ ) → ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) ) | |
| 8 | 7 | ralrimiva | ⊢ ( 𝑇 ∈ BndLinOp → ∀ 𝑦 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) ) |
| 9 | oveq1 | ⊢ ( 𝑥 = ( normop ‘ 𝑇 ) → ( 𝑥 · ( normℎ ‘ 𝑦 ) ) = ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) ) | |
| 10 | 9 | breq2d | ⊢ ( 𝑥 = ( normop ‘ 𝑇 ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ↔ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) ) ) |
| 11 | 10 | ralbidv | ⊢ ( 𝑥 = ( normop ‘ 𝑇 ) → ( ∀ 𝑦 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) ) ) |
| 12 | 11 | rspcev | ⊢ ( ( ( normop ‘ 𝑇 ) ∈ ℝ ∧ ∀ 𝑦 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) |
| 13 | 6 8 12 | syl2anc | ⊢ ( 𝑇 ∈ BndLinOp → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) |
| 14 | lnopcon | ⊢ ( 𝑇 ∈ LinOp → ( 𝑇 ∈ ContOp ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) ) | |
| 15 | 13 14 | imbitrrid | ⊢ ( 𝑇 ∈ LinOp → ( 𝑇 ∈ BndLinOp → 𝑇 ∈ ContOp ) ) |
| 16 | 5 15 | impbid | ⊢ ( 𝑇 ∈ LinOp → ( 𝑇 ∈ ContOp ↔ 𝑇 ∈ BndLinOp ) ) |