This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lower bound for the norm of a bounded linear Hilbert space operator. (Contributed by NM, 18-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nmbdoplb | ⊢ ( ( 𝑇 ∈ BndLinOp ∧ 𝐴 ∈ ℋ ) → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 | ⊢ ( 𝑇 = if ( 𝑇 ∈ BndLinOp , 𝑇 , 0hop ) → ( 𝑇 ‘ 𝐴 ) = ( if ( 𝑇 ∈ BndLinOp , 𝑇 , 0hop ) ‘ 𝐴 ) ) | |
| 2 | 1 | fveq2d | ⊢ ( 𝑇 = if ( 𝑇 ∈ BndLinOp , 𝑇 , 0hop ) → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) = ( normℎ ‘ ( if ( 𝑇 ∈ BndLinOp , 𝑇 , 0hop ) ‘ 𝐴 ) ) ) |
| 3 | fveq2 | ⊢ ( 𝑇 = if ( 𝑇 ∈ BndLinOp , 𝑇 , 0hop ) → ( normop ‘ 𝑇 ) = ( normop ‘ if ( 𝑇 ∈ BndLinOp , 𝑇 , 0hop ) ) ) | |
| 4 | 3 | oveq1d | ⊢ ( 𝑇 = if ( 𝑇 ∈ BndLinOp , 𝑇 , 0hop ) → ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) = ( ( normop ‘ if ( 𝑇 ∈ BndLinOp , 𝑇 , 0hop ) ) · ( normℎ ‘ 𝐴 ) ) ) |
| 5 | 2 4 | breq12d | ⊢ ( 𝑇 = if ( 𝑇 ∈ BndLinOp , 𝑇 , 0hop ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ↔ ( normℎ ‘ ( if ( 𝑇 ∈ BndLinOp , 𝑇 , 0hop ) ‘ 𝐴 ) ) ≤ ( ( normop ‘ if ( 𝑇 ∈ BndLinOp , 𝑇 , 0hop ) ) · ( normℎ ‘ 𝐴 ) ) ) ) |
| 6 | 5 | imbi2d | ⊢ ( 𝑇 = if ( 𝑇 ∈ BndLinOp , 𝑇 , 0hop ) → ( ( 𝐴 ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) ↔ ( 𝐴 ∈ ℋ → ( normℎ ‘ ( if ( 𝑇 ∈ BndLinOp , 𝑇 , 0hop ) ‘ 𝐴 ) ) ≤ ( ( normop ‘ if ( 𝑇 ∈ BndLinOp , 𝑇 , 0hop ) ) · ( normℎ ‘ 𝐴 ) ) ) ) ) |
| 7 | 0bdop | ⊢ 0hop ∈ BndLinOp | |
| 8 | 7 | elimel | ⊢ if ( 𝑇 ∈ BndLinOp , 𝑇 , 0hop ) ∈ BndLinOp |
| 9 | 8 | nmbdoplbi | ⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ ( if ( 𝑇 ∈ BndLinOp , 𝑇 , 0hop ) ‘ 𝐴 ) ) ≤ ( ( normop ‘ if ( 𝑇 ∈ BndLinOp , 𝑇 , 0hop ) ) · ( normℎ ‘ 𝐴 ) ) ) |
| 10 | 6 9 | dedth | ⊢ ( 𝑇 ∈ BndLinOp → ( 𝐴 ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) ) |
| 11 | 10 | imp | ⊢ ( ( 𝑇 ∈ BndLinOp ∧ 𝐴 ∈ ℋ ) → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |