This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A continuous linear operator is a bounded linear operator. This theorem justifies our use of "bounded linear" as an interchangeable condition for "continuous linear" used in some textbook proofs. (Contributed by NM, 18-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lncnopbd | ⊢ ( 𝑇 ∈ ( LinOp ∩ ContOp ) ↔ 𝑇 ∈ BndLinOp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin | ⊢ ( 𝑇 ∈ ( LinOp ∩ ContOp ) ↔ ( 𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp ) ) | |
| 2 | lnopcnbd | ⊢ ( 𝑇 ∈ LinOp → ( 𝑇 ∈ ContOp ↔ 𝑇 ∈ BndLinOp ) ) | |
| 3 | 2 | biimpa | ⊢ ( ( 𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp ) → 𝑇 ∈ BndLinOp ) |
| 4 | bdopln | ⊢ ( 𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp ) | |
| 5 | 2 | biimparc | ⊢ ( ( 𝑇 ∈ BndLinOp ∧ 𝑇 ∈ LinOp ) → 𝑇 ∈ ContOp ) |
| 6 | 4 5 | mpdan | ⊢ ( 𝑇 ∈ BndLinOp → 𝑇 ∈ ContOp ) |
| 7 | 4 6 | jca | ⊢ ( 𝑇 ∈ BndLinOp → ( 𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp ) ) |
| 8 | 3 7 | impbii | ⊢ ( ( 𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp ) ↔ 𝑇 ∈ BndLinOp ) |
| 9 | 1 8 | bitri | ⊢ ( 𝑇 ∈ ( LinOp ∩ ContOp ) ↔ 𝑇 ∈ BndLinOp ) |