This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition/subtraction cancellation law for vectors in Hilbert space. (Contributed by NM, 7-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvpncan | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐵 ) −ℎ 𝐵 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvaddcl | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 +ℎ 𝐵 ) ∈ ℋ ) | |
| 2 | hvsubval | ⊢ ( ( ( 𝐴 +ℎ 𝐵 ) ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐵 ) −ℎ 𝐵 ) = ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( - 1 ·ℎ 𝐵 ) ) ) | |
| 3 | 1 2 | sylancom | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐵 ) −ℎ 𝐵 ) = ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( - 1 ·ℎ 𝐵 ) ) ) |
| 4 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 5 | hvmulcl | ⊢ ( ( - 1 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( - 1 ·ℎ 𝐵 ) ∈ ℋ ) | |
| 6 | 4 5 | mpan | ⊢ ( 𝐵 ∈ ℋ → ( - 1 ·ℎ 𝐵 ) ∈ ℋ ) |
| 7 | 6 | ancli | ⊢ ( 𝐵 ∈ ℋ → ( 𝐵 ∈ ℋ ∧ ( - 1 ·ℎ 𝐵 ) ∈ ℋ ) ) |
| 8 | ax-hvass | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( - 1 ·ℎ 𝐵 ) ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( - 1 ·ℎ 𝐵 ) ) = ( 𝐴 +ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) ) | |
| 9 | 8 | 3expb | ⊢ ( ( 𝐴 ∈ ℋ ∧ ( 𝐵 ∈ ℋ ∧ ( - 1 ·ℎ 𝐵 ) ∈ ℋ ) ) → ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( - 1 ·ℎ 𝐵 ) ) = ( 𝐴 +ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) ) |
| 10 | 7 9 | sylan2 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( - 1 ·ℎ 𝐵 ) ) = ( 𝐴 +ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) ) |
| 11 | hvnegid | ⊢ ( 𝐵 ∈ ℋ → ( 𝐵 +ℎ ( - 1 ·ℎ 𝐵 ) ) = 0ℎ ) | |
| 12 | 11 | oveq2d | ⊢ ( 𝐵 ∈ ℋ → ( 𝐴 +ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) = ( 𝐴 +ℎ 0ℎ ) ) |
| 13 | ax-hvaddid | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 +ℎ 0ℎ ) = 𝐴 ) | |
| 14 | 12 13 | sylan9eqr | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 +ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) = 𝐴 ) |
| 15 | 3 10 14 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐵 ) −ℎ 𝐵 ) = 𝐴 ) |