This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplicative property of a linear Hilbert space functional. (Contributed by NM, 30-May-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lnfnmul | ⊢ ( ( 𝑇 ∈ LinFn ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 | ⊢ ( 𝑇 = if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) → ( 𝑇 ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) ‘ ( 𝐴 ·ℎ 𝐵 ) ) ) | |
| 2 | fveq1 | ⊢ ( 𝑇 = if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) → ( 𝑇 ‘ 𝐵 ) = ( if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) ‘ 𝐵 ) ) | |
| 3 | 2 | oveq2d | ⊢ ( 𝑇 = if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) → ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) = ( 𝐴 · ( if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) ‘ 𝐵 ) ) ) |
| 4 | 1 3 | eqeq12d | ⊢ ( 𝑇 = if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) → ( ( 𝑇 ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) ↔ ( if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( 𝐴 · ( if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) ‘ 𝐵 ) ) ) ) |
| 5 | 4 | imbi2d | ⊢ ( 𝑇 = if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) → ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) ) ↔ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( 𝐴 · ( if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) ‘ 𝐵 ) ) ) ) ) |
| 6 | 0lnfn | ⊢ ( ℋ × { 0 } ) ∈ LinFn | |
| 7 | 6 | elimel | ⊢ if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) ∈ LinFn |
| 8 | 7 | lnfnmuli | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( 𝐴 · ( if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) ‘ 𝐵 ) ) ) |
| 9 | 5 8 | dedth | ⊢ ( 𝑇 ∈ LinFn → ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) ) ) |
| 10 | 9 | 3impib | ⊢ ( ( 𝑇 ∈ LinFn ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( 𝐴 · ( 𝑇 ‘ 𝐵 ) ) ) |