This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplicative property of a linear Hilbert space functional. (Contributed by NM, 30-May-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lnfnmul | |- ( ( T e. LinFn /\ A e. CC /\ B e. ~H ) -> ( T ` ( A .h B ) ) = ( A x. ( T ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 | |- ( T = if ( T e. LinFn , T , ( ~H X. { 0 } ) ) -> ( T ` ( A .h B ) ) = ( if ( T e. LinFn , T , ( ~H X. { 0 } ) ) ` ( A .h B ) ) ) |
|
| 2 | fveq1 | |- ( T = if ( T e. LinFn , T , ( ~H X. { 0 } ) ) -> ( T ` B ) = ( if ( T e. LinFn , T , ( ~H X. { 0 } ) ) ` B ) ) |
|
| 3 | 2 | oveq2d | |- ( T = if ( T e. LinFn , T , ( ~H X. { 0 } ) ) -> ( A x. ( T ` B ) ) = ( A x. ( if ( T e. LinFn , T , ( ~H X. { 0 } ) ) ` B ) ) ) |
| 4 | 1 3 | eqeq12d | |- ( T = if ( T e. LinFn , T , ( ~H X. { 0 } ) ) -> ( ( T ` ( A .h B ) ) = ( A x. ( T ` B ) ) <-> ( if ( T e. LinFn , T , ( ~H X. { 0 } ) ) ` ( A .h B ) ) = ( A x. ( if ( T e. LinFn , T , ( ~H X. { 0 } ) ) ` B ) ) ) ) |
| 5 | 4 | imbi2d | |- ( T = if ( T e. LinFn , T , ( ~H X. { 0 } ) ) -> ( ( ( A e. CC /\ B e. ~H ) -> ( T ` ( A .h B ) ) = ( A x. ( T ` B ) ) ) <-> ( ( A e. CC /\ B e. ~H ) -> ( if ( T e. LinFn , T , ( ~H X. { 0 } ) ) ` ( A .h B ) ) = ( A x. ( if ( T e. LinFn , T , ( ~H X. { 0 } ) ) ` B ) ) ) ) ) |
| 6 | 0lnfn | |- ( ~H X. { 0 } ) e. LinFn |
|
| 7 | 6 | elimel | |- if ( T e. LinFn , T , ( ~H X. { 0 } ) ) e. LinFn |
| 8 | 7 | lnfnmuli | |- ( ( A e. CC /\ B e. ~H ) -> ( if ( T e. LinFn , T , ( ~H X. { 0 } ) ) ` ( A .h B ) ) = ( A x. ( if ( T e. LinFn , T , ( ~H X. { 0 } ) ) ` B ) ) ) |
| 9 | 5 8 | dedth | |- ( T e. LinFn -> ( ( A e. CC /\ B e. ~H ) -> ( T ` ( A .h B ) ) = ( A x. ( T ` B ) ) ) ) |
| 10 | 9 | 3impib | |- ( ( T e. LinFn /\ A e. CC /\ B e. ~H ) -> ( T ` ( A .h B ) ) = ( A x. ( T ` B ) ) ) |