This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a subspace under a linear operator is a subspace. (Contributed by Mario Carneiro, 19-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rnelsh.1 | ⊢ 𝑇 ∈ LinOp | |
| imaelsh.2 | ⊢ 𝐴 ∈ Sℋ | ||
| Assertion | imaelshi | ⊢ ( 𝑇 “ 𝐴 ) ∈ Sℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnelsh.1 | ⊢ 𝑇 ∈ LinOp | |
| 2 | imaelsh.2 | ⊢ 𝐴 ∈ Sℋ | |
| 3 | imassrn | ⊢ ( 𝑇 “ 𝐴 ) ⊆ ran 𝑇 | |
| 4 | 1 | lnopfi | ⊢ 𝑇 : ℋ ⟶ ℋ |
| 5 | frn | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ran 𝑇 ⊆ ℋ ) | |
| 6 | 4 5 | ax-mp | ⊢ ran 𝑇 ⊆ ℋ |
| 7 | 3 6 | sstri | ⊢ ( 𝑇 “ 𝐴 ) ⊆ ℋ |
| 8 | 1 | lnop0i | ⊢ ( 𝑇 ‘ 0ℎ ) = 0ℎ |
| 9 | sh0 | ⊢ ( 𝐴 ∈ Sℋ → 0ℎ ∈ 𝐴 ) | |
| 10 | 2 9 | ax-mp | ⊢ 0ℎ ∈ 𝐴 |
| 11 | ffun | ⊢ ( 𝑇 : ℋ ⟶ ℋ → Fun 𝑇 ) | |
| 12 | 4 11 | ax-mp | ⊢ Fun 𝑇 |
| 13 | 2 | shssii | ⊢ 𝐴 ⊆ ℋ |
| 14 | 4 | fdmi | ⊢ dom 𝑇 = ℋ |
| 15 | 13 14 | sseqtrri | ⊢ 𝐴 ⊆ dom 𝑇 |
| 16 | funfvima2 | ⊢ ( ( Fun 𝑇 ∧ 𝐴 ⊆ dom 𝑇 ) → ( 0ℎ ∈ 𝐴 → ( 𝑇 ‘ 0ℎ ) ∈ ( 𝑇 “ 𝐴 ) ) ) | |
| 17 | 12 15 16 | mp2an | ⊢ ( 0ℎ ∈ 𝐴 → ( 𝑇 ‘ 0ℎ ) ∈ ( 𝑇 “ 𝐴 ) ) |
| 18 | 10 17 | ax-mp | ⊢ ( 𝑇 ‘ 0ℎ ) ∈ ( 𝑇 “ 𝐴 ) |
| 19 | 8 18 | eqeltrri | ⊢ 0ℎ ∈ ( 𝑇 “ 𝐴 ) |
| 20 | 7 19 | pm3.2i | ⊢ ( ( 𝑇 “ 𝐴 ) ⊆ ℋ ∧ 0ℎ ∈ ( 𝑇 “ 𝐴 ) ) |
| 21 | ffn | ⊢ ( 𝑇 : ℋ ⟶ ℋ → 𝑇 Fn ℋ ) | |
| 22 | 4 21 | ax-mp | ⊢ 𝑇 Fn ℋ |
| 23 | oveq1 | ⊢ ( 𝑢 = ( 𝑇 ‘ 𝑥 ) → ( 𝑢 +ℎ 𝑣 ) = ( ( 𝑇 ‘ 𝑥 ) +ℎ 𝑣 ) ) | |
| 24 | 23 | eleq1d | ⊢ ( 𝑢 = ( 𝑇 ‘ 𝑥 ) → ( ( 𝑢 +ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ↔ ( ( 𝑇 ‘ 𝑥 ) +ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ) ) |
| 25 | 24 | ralbidv | ⊢ ( 𝑢 = ( 𝑇 ‘ 𝑥 ) → ( ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( 𝑢 +ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ↔ ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( ( 𝑇 ‘ 𝑥 ) +ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ) ) |
| 26 | 25 | ralima | ⊢ ( ( 𝑇 Fn ℋ ∧ 𝐴 ⊆ ℋ ) → ( ∀ 𝑢 ∈ ( 𝑇 “ 𝐴 ) ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( 𝑢 +ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( ( 𝑇 ‘ 𝑥 ) +ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ) ) |
| 27 | 22 13 26 | mp2an | ⊢ ( ∀ 𝑢 ∈ ( 𝑇 “ 𝐴 ) ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( 𝑢 +ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( ( 𝑇 ‘ 𝑥 ) +ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ) |
| 28 | 2 | sheli | ⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ℋ ) |
| 29 | 2 | sheli | ⊢ ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ℋ ) |
| 30 | 1 | lnopaddi | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑇 ‘ ( 𝑥 +ℎ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑦 ) ) ) |
| 31 | 28 29 30 | syl2an | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑇 ‘ ( 𝑥 +ℎ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑦 ) ) ) |
| 32 | shaddcl | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 +ℎ 𝑦 ) ∈ 𝐴 ) | |
| 33 | 2 32 | mp3an1 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 +ℎ 𝑦 ) ∈ 𝐴 ) |
| 34 | funfvima2 | ⊢ ( ( Fun 𝑇 ∧ 𝐴 ⊆ dom 𝑇 ) → ( ( 𝑥 +ℎ 𝑦 ) ∈ 𝐴 → ( 𝑇 ‘ ( 𝑥 +ℎ 𝑦 ) ) ∈ ( 𝑇 “ 𝐴 ) ) ) | |
| 35 | 12 15 34 | mp2an | ⊢ ( ( 𝑥 +ℎ 𝑦 ) ∈ 𝐴 → ( 𝑇 ‘ ( 𝑥 +ℎ 𝑦 ) ) ∈ ( 𝑇 “ 𝐴 ) ) |
| 36 | 33 35 | syl | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑇 ‘ ( 𝑥 +ℎ 𝑦 ) ) ∈ ( 𝑇 “ 𝐴 ) ) |
| 37 | 31 36 | eqeltrrd | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ( 𝑇 “ 𝐴 ) ) |
| 38 | 37 | ralrimiva | ⊢ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐴 ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ( 𝑇 “ 𝐴 ) ) |
| 39 | oveq2 | ⊢ ( 𝑣 = ( 𝑇 ‘ 𝑦 ) → ( ( 𝑇 ‘ 𝑥 ) +ℎ 𝑣 ) = ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑦 ) ) ) | |
| 40 | 39 | eleq1d | ⊢ ( 𝑣 = ( 𝑇 ‘ 𝑦 ) → ( ( ( 𝑇 ‘ 𝑥 ) +ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ↔ ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ( 𝑇 “ 𝐴 ) ) ) |
| 41 | 40 | ralima | ⊢ ( ( 𝑇 Fn ℋ ∧ 𝐴 ⊆ ℋ ) → ( ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( ( 𝑇 ‘ 𝑥 ) +ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ↔ ∀ 𝑦 ∈ 𝐴 ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ( 𝑇 “ 𝐴 ) ) ) |
| 42 | 22 13 41 | mp2an | ⊢ ( ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( ( 𝑇 ‘ 𝑥 ) +ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ↔ ∀ 𝑦 ∈ 𝐴 ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ( 𝑇 “ 𝐴 ) ) |
| 43 | 38 42 | sylibr | ⊢ ( 𝑥 ∈ 𝐴 → ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( ( 𝑇 ‘ 𝑥 ) +ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ) |
| 44 | 27 43 | mprgbir | ⊢ ∀ 𝑢 ∈ ( 𝑇 “ 𝐴 ) ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( 𝑢 +ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) |
| 45 | 1 | lnopmuli | ⊢ ( ( 𝑢 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑇 ‘ ( 𝑢 ·ℎ 𝑦 ) ) = ( 𝑢 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) |
| 46 | 29 45 | sylan2 | ⊢ ( ( 𝑢 ∈ ℂ ∧ 𝑦 ∈ 𝐴 ) → ( 𝑇 ‘ ( 𝑢 ·ℎ 𝑦 ) ) = ( 𝑢 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) |
| 47 | shmulcl | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝑢 ∈ ℂ ∧ 𝑦 ∈ 𝐴 ) → ( 𝑢 ·ℎ 𝑦 ) ∈ 𝐴 ) | |
| 48 | 2 47 | mp3an1 | ⊢ ( ( 𝑢 ∈ ℂ ∧ 𝑦 ∈ 𝐴 ) → ( 𝑢 ·ℎ 𝑦 ) ∈ 𝐴 ) |
| 49 | funfvima2 | ⊢ ( ( Fun 𝑇 ∧ 𝐴 ⊆ dom 𝑇 ) → ( ( 𝑢 ·ℎ 𝑦 ) ∈ 𝐴 → ( 𝑇 ‘ ( 𝑢 ·ℎ 𝑦 ) ) ∈ ( 𝑇 “ 𝐴 ) ) ) | |
| 50 | 12 15 49 | mp2an | ⊢ ( ( 𝑢 ·ℎ 𝑦 ) ∈ 𝐴 → ( 𝑇 ‘ ( 𝑢 ·ℎ 𝑦 ) ) ∈ ( 𝑇 “ 𝐴 ) ) |
| 51 | 48 50 | syl | ⊢ ( ( 𝑢 ∈ ℂ ∧ 𝑦 ∈ 𝐴 ) → ( 𝑇 ‘ ( 𝑢 ·ℎ 𝑦 ) ) ∈ ( 𝑇 “ 𝐴 ) ) |
| 52 | 46 51 | eqeltrrd | ⊢ ( ( 𝑢 ∈ ℂ ∧ 𝑦 ∈ 𝐴 ) → ( 𝑢 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ( 𝑇 “ 𝐴 ) ) |
| 53 | 52 | ralrimiva | ⊢ ( 𝑢 ∈ ℂ → ∀ 𝑦 ∈ 𝐴 ( 𝑢 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ( 𝑇 “ 𝐴 ) ) |
| 54 | oveq2 | ⊢ ( 𝑣 = ( 𝑇 ‘ 𝑦 ) → ( 𝑢 ·ℎ 𝑣 ) = ( 𝑢 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) | |
| 55 | 54 | eleq1d | ⊢ ( 𝑣 = ( 𝑇 ‘ 𝑦 ) → ( ( 𝑢 ·ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ↔ ( 𝑢 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ( 𝑇 “ 𝐴 ) ) ) |
| 56 | 55 | ralima | ⊢ ( ( 𝑇 Fn ℋ ∧ 𝐴 ⊆ ℋ ) → ( ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( 𝑢 ·ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑢 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ( 𝑇 “ 𝐴 ) ) ) |
| 57 | 22 13 56 | mp2an | ⊢ ( ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( 𝑢 ·ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑢 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ( 𝑇 “ 𝐴 ) ) |
| 58 | 53 57 | sylibr | ⊢ ( 𝑢 ∈ ℂ → ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( 𝑢 ·ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ) |
| 59 | 58 | rgen | ⊢ ∀ 𝑢 ∈ ℂ ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( 𝑢 ·ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) |
| 60 | 44 59 | pm3.2i | ⊢ ( ∀ 𝑢 ∈ ( 𝑇 “ 𝐴 ) ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( 𝑢 +ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ∧ ∀ 𝑢 ∈ ℂ ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( 𝑢 ·ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ) |
| 61 | issh2 | ⊢ ( ( 𝑇 “ 𝐴 ) ∈ Sℋ ↔ ( ( ( 𝑇 “ 𝐴 ) ⊆ ℋ ∧ 0ℎ ∈ ( 𝑇 “ 𝐴 ) ) ∧ ( ∀ 𝑢 ∈ ( 𝑇 “ 𝐴 ) ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( 𝑢 +ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ∧ ∀ 𝑢 ∈ ℂ ∀ 𝑣 ∈ ( 𝑇 “ 𝐴 ) ( 𝑢 ·ℎ 𝑣 ) ∈ ( 𝑇 “ 𝐴 ) ) ) ) | |
| 62 | 20 60 61 | mpbir2an | ⊢ ( 𝑇 “ 𝐴 ) ∈ Sℋ |