This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of scalar product for a left module. (Contributed by SN, 15-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmodvscld.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lmodvscld.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| lmodvscld.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| lmodvscld.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| lmodvscld.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| lmodvscld.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝐾 ) | ||
| lmodvscld.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| Assertion | lmodvscld | ⊢ ( 𝜑 → ( 𝑅 · 𝑋 ) ∈ 𝑉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodvscld.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lmodvscld.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 3 | lmodvscld.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 4 | lmodvscld.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 5 | lmodvscld.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 6 | lmodvscld.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝐾 ) | |
| 7 | lmodvscld.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 8 | 1 2 3 4 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑅 · 𝑋 ) ∈ 𝑉 ) |
| 9 | 5 6 7 8 | syl3anc | ⊢ ( 𝜑 → ( 𝑅 · 𝑋 ) ∈ 𝑉 ) |