This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for lmodfopne . (Contributed by AV, 2-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmodfopne.t | |- .x. = ( .sf ` W ) |
|
| lmodfopne.a | |- .+ = ( +f ` W ) |
||
| lmodfopne.v | |- V = ( Base ` W ) |
||
| lmodfopne.s | |- S = ( Scalar ` W ) |
||
| lmodfopne.k | |- K = ( Base ` S ) |
||
| Assertion | lmodfopnelem1 | |- ( ( W e. LMod /\ .+ = .x. ) -> V = K ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodfopne.t | |- .x. = ( .sf ` W ) |
|
| 2 | lmodfopne.a | |- .+ = ( +f ` W ) |
|
| 3 | lmodfopne.v | |- V = ( Base ` W ) |
|
| 4 | lmodfopne.s | |- S = ( Scalar ` W ) |
|
| 5 | lmodfopne.k | |- K = ( Base ` S ) |
|
| 6 | 3 4 5 1 | lmodscaf | |- ( W e. LMod -> .x. : ( K X. V ) --> V ) |
| 7 | 6 | ffnd | |- ( W e. LMod -> .x. Fn ( K X. V ) ) |
| 8 | 3 2 | plusffn | |- .+ Fn ( V X. V ) |
| 9 | fneq1 | |- ( .+ = .x. -> ( .+ Fn ( V X. V ) <-> .x. Fn ( V X. V ) ) ) |
|
| 10 | fndmu | |- ( ( .x. Fn ( V X. V ) /\ .x. Fn ( K X. V ) ) -> ( V X. V ) = ( K X. V ) ) |
|
| 11 | 10 | ex | |- ( .x. Fn ( V X. V ) -> ( .x. Fn ( K X. V ) -> ( V X. V ) = ( K X. V ) ) ) |
| 12 | 9 11 | biimtrdi | |- ( .+ = .x. -> ( .+ Fn ( V X. V ) -> ( .x. Fn ( K X. V ) -> ( V X. V ) = ( K X. V ) ) ) ) |
| 13 | 12 | com13 | |- ( .x. Fn ( K X. V ) -> ( .+ Fn ( V X. V ) -> ( .+ = .x. -> ( V X. V ) = ( K X. V ) ) ) ) |
| 14 | 13 | impcom | |- ( ( .+ Fn ( V X. V ) /\ .x. Fn ( K X. V ) ) -> ( .+ = .x. -> ( V X. V ) = ( K X. V ) ) ) |
| 15 | 3 | lmodbn0 | |- ( W e. LMod -> V =/= (/) ) |
| 16 | xp11 | |- ( ( V =/= (/) /\ V =/= (/) ) -> ( ( V X. V ) = ( K X. V ) <-> ( V = K /\ V = V ) ) ) |
|
| 17 | 15 15 16 | syl2anc | |- ( W e. LMod -> ( ( V X. V ) = ( K X. V ) <-> ( V = K /\ V = V ) ) ) |
| 18 | 17 | simprbda | |- ( ( W e. LMod /\ ( V X. V ) = ( K X. V ) ) -> V = K ) |
| 19 | 18 | expcom | |- ( ( V X. V ) = ( K X. V ) -> ( W e. LMod -> V = K ) ) |
| 20 | 14 19 | syl6 | |- ( ( .+ Fn ( V X. V ) /\ .x. Fn ( K X. V ) ) -> ( .+ = .x. -> ( W e. LMod -> V = K ) ) ) |
| 21 | 20 | com23 | |- ( ( .+ Fn ( V X. V ) /\ .x. Fn ( K X. V ) ) -> ( W e. LMod -> ( .+ = .x. -> V = K ) ) ) |
| 22 | 21 | ex | |- ( .+ Fn ( V X. V ) -> ( .x. Fn ( K X. V ) -> ( W e. LMod -> ( .+ = .x. -> V = K ) ) ) ) |
| 23 | 22 | com23 | |- ( .+ Fn ( V X. V ) -> ( W e. LMod -> ( .x. Fn ( K X. V ) -> ( .+ = .x. -> V = K ) ) ) ) |
| 24 | 8 23 | ax-mp | |- ( W e. LMod -> ( .x. Fn ( K X. V ) -> ( .+ = .x. -> V = K ) ) ) |
| 25 | 7 24 | mpd | |- ( W e. LMod -> ( .+ = .x. -> V = K ) ) |
| 26 | 25 | imp | |- ( ( W e. LMod /\ .+ = .x. ) -> V = K ) |