This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The kernel of a homomorphism is a submodule. (Contributed by Stefan O'Rear, 1-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmhmkerlss.k | |- K = ( `' F " { .0. } ) |
|
| lmhmkerlss.z | |- .0. = ( 0g ` T ) |
||
| lmhmkerlss.u | |- U = ( LSubSp ` S ) |
||
| Assertion | lmhmkerlss | |- ( F e. ( S LMHom T ) -> K e. U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmhmkerlss.k | |- K = ( `' F " { .0. } ) |
|
| 2 | lmhmkerlss.z | |- .0. = ( 0g ` T ) |
|
| 3 | lmhmkerlss.u | |- U = ( LSubSp ` S ) |
|
| 4 | lmhmlmod2 | |- ( F e. ( S LMHom T ) -> T e. LMod ) |
|
| 5 | eqid | |- ( LSubSp ` T ) = ( LSubSp ` T ) |
|
| 6 | 2 5 | lsssn0 | |- ( T e. LMod -> { .0. } e. ( LSubSp ` T ) ) |
| 7 | 4 6 | syl | |- ( F e. ( S LMHom T ) -> { .0. } e. ( LSubSp ` T ) ) |
| 8 | 3 5 | lmhmpreima | |- ( ( F e. ( S LMHom T ) /\ { .0. } e. ( LSubSp ` T ) ) -> ( `' F " { .0. } ) e. U ) |
| 9 | 7 8 | mpdan | |- ( F e. ( S LMHom T ) -> ( `' F " { .0. } ) e. U ) |
| 10 | 1 9 | eqeltrid | |- ( F e. ( S LMHom T ) -> K e. U ) |